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MỞ ĐẦU 

1. Tính cấp thiết của đề tài 

Biến đổi khí hậu đang là thách thức môi trường lớn nhất của thế kỷ 21, tác 

động mạnh đến các hệ sinh thái toàn cầu, đặc biệt tại vùng nhiệt đới – nơi có độ nhạy 

cao trước hạn hán, nắng nóng và các hiện tượng cực đoan (Hoegh-Guldberg và cộng 

sự, 2019). Trong bối cảnh đó, rừng giữ vai trò thiết yếu trong điều hòa khí hậu khi 

lưu trữ từ 76% đến 98% lượng các-bon trên mặt đất (Pan và cộng sự, 2011; Houghton 

và cộng sự, 2009) và duy trì chu trình các-bon thông qua hấp thụ CO₂ từ khí quyển 

(Molotoks và cộng sự, 2018; Tian và cộng sự, 2022; Payne và cộng sự, 2019; Xiao 

và cộng sự, 2019). Đối với vùng nhiệt đới ẩm, rừng thường xanh là một trong những 

hệ sinh thái có khả năng hấp thụ và lưu trữ các-bon lớn nhất, đóng góp trực tiếp vào 

giảm nhẹ biến đổi khí hậu. 

AGB là tham số quan trọng phản ánh cấu trúc, năng suất và khả năng hấp thụ 

CO₂ của rừng (Ma và cộng sự, 2024; Li và cộng sự, 2012; Huang và cộng sự, 2019). 

Việc ước tính chính xác AGB và lượng CO₂ hấp thụ là cơ sở khoa học cho quản lý 

rừng bền vững, kiểm kê khí nhà kính và hoạch định chính sách ứng phó biến đổi khí 

hậu (Sarker và Nichol, 2011). 

Tại Việt Nam, các chính sách lớn như Luật Lâm nghiệp năm 2017 (được Quốc 

hội nước Cộng hòa xã hội chủ nghĩa Việt Nam thông qua ngày 15/11/2017), Chiến 

lược phát triển lâm nghiệp giai đoạn 2021–2030, tầm nhìn đến năm 2050 (ban hành 

kèm theo Quyết định số 523/QĐ-TTg ngày 01/4/2021 của Thủ tướng Chính phủ), và 

Nghị quyết số 57-NQ/TW ngày 22/12/2024 của Bộ Chính trị đều nhấn mạnh yêu cầu 

hiện đại hóa công tác điều tra, giám sát tài nguyên rừng và nâng cao vai trò của rừng 

trong thực hiện mục tiêu phát thải ròng bằng “0” (Net-Zero). Điều này đòi hỏi các 

phương pháp định lượng các-bon rừng phải có độ chính xác cao, minh bạch và đáp 

ứng các tiêu chuẩn quốc tế. 

Đối với khu vực Tây Nguyên, đặc biệt tại Đắk Lắk, rừng thường xanh có ý 
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nghĩa quan trọng đối với điều tiết khí hậu và bảo vệ lưu vực. Tuy nhiên, khu vực này 

đang chịu áp lực từ suy thoái rừng, biến động sử dụng đất và hạn hán kéo dài (Nguyễn 

Thị Thanh Hương và cộng sự, 2025). Nhu cầu giám sát AGB và CO₂ hấp thụ một 

cách chính xác, liên tục và quy mô lớn vì vậy trở nên đặc biệt cấp bách. 

Trong những năm gần đây, sự phát triển mạnh mẽ của công nghệ viễn thám 

(bao gồm cả ảnh quang học và ra-đa) kết hợp với các thuật toán học máy như Random 

Forest (RF) đã mở ra các phương pháp hiện đại và hiệu quả để mô hình hóa sinh khối 

rừng và lượng CO₂ hấp thụ. Ví dụ, nghiên cứu tại rừng Amazon cho thấy khi kết hợp 

dữ liệu ra-đa và quang học với RF cho độ chính xác rất cao (Antunes và cộng sự, 

2024), và tổng quan gần đây cũng nhấn mạnh tầm quan trọng của việc sử dụng nhiều 

nguồn (multi-sensor) trong ước tính trữ lượng cacbon (Nguyen & Saha, 2024). Ứng 

dụng tại các hệ rừng nhiệt đới và núi cao (như Myanmar) cũng cho thấy Sentinel-2 

và RF hoặc mô hình máy học khác đem lại khả năng ước tính AGB rất tốt (Wai và 

cộng sự, 2022). Những công cụ này đặc biệt phù hợp cho rừng nhiệt đới có điều kiện 

địa hình phức tạp và biến động cao, nơi việc khảo sát thực địa truyền thống gặp nhiều 

khó khăn. 

Vì vậy, đề tài “Ước tính lượng CO₂ hấp thụ của rừng thường xanh bằng dữ 

liệu viễn thám và kỹ thuật GIS” mang tính cấp thiết trong bối cảnh hiện nay, góp phần 

cung cấp bằng chứng khoa học về sinh khối – các-bon rừng tại Đắk Lắk, đồng thời 

đóng góp vào việc hoàn thiện các phương pháp giám sát rừng hiện đại phục vụ quản 

lý bền vững và ứng phó biến đổi khí hậu. 

2. Mục tiêu nghiên cứu 

➢ Mục tiêu tổng quát 

Ước tính lượng CO₂ hấp thụ từ sinh khối trên mặt đất (AGB) của kiểu rừng 

thường xanh trên địa bàn tỉnh Đắk Lắk thông qua tích hợp dữ liệu viễn thám đa nguồn, 

kỹ thuật GIS và số liệu điều tra thực địa. 

➢ Mục tiêu cụ thể 
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- Phân tích mối quan hệ giữa các chỉ số và đặc trưng ảnh viễn thám với 

AGB của rừng thường xanh. 

- Xây dựng và đánh giá mô hình ước tính AGB từ dữ liệu viễn thám, lựa 

chọn mô hình tối ưu cho khu vực nghiên cứu. 

- Lập bản đồ AGB và lượng CO₂ hấp thụ, đồng thời phân tích biến động 

theo không gian – thời gian. 

3. Phạm vi nghiên cứu 

Trong khuôn khổ thời gian và nguồn lực cũng như khả năng tiếp cận dữ liệu, 

phạm vi nghiên cứu được xác định như sau:  

- Phạm vi không gian và đối tượng 

Nghiên cứu chỉ thực hiện trong phạm vi tỉnh Đắk Lắk (địa giới hành chính 

cũ) và tập trung vào một kiểu rừng là rừng thường xanh, không xem xét các kiểu rừng 

khác. Thành phần loài trong các ô mẫu được tiếp cận ở mức tổng hợp chung, không 

phân tích chi tiết theo từng loài hoặc nhóm loài. 

- Phạm vi thời gian  

Đối với xây dựng mô hình ước lượng AGB, mô hình được phát triển từ các ô 

mẫu thực địa thu thập giai đoạn 2020–2024. Bộ ô mẫu năm 2013 từ nghiên cứu trước 

được sử dụng nhằm kiểm tra khả năng áp dụng của mô hình đối với dữ liệu quá khứ 

thông qua ảnh Landsat 8 OLI năm 2013. Đối với phân tích biến động rừng thường 

xanh và trữ lượng các-bon, nghiên cứu chỉ sử dụng chuỗi ảnh Sentinel-1 giai đoạn 

2015–2025 và Landsat 8 OLI. 

- Phạm vi nội dung 

Luận án tập trung nghiên cứu các vấn đề chính như sau: 

✓ Phân loại, lập bản đồ và đánh giá thay đổi RTX tỉnh Đắk Lắk giai đoạn 

2015-2025. 

✓ Phân tích mối quan hệ giữa đặc trưng ảnh viễn thám và AGB. 
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✓ Xây dựng mô hình ước tính AGB từ dữ liệu viễn thám. 

✓ Lập bản đồ AGB và lượng CO₂ hấp thụ, đánh giá biến động theo thời gian. 

Trong khuôn khổ nghiên cứu, luận án chỉ thử nghiệm một số nhóm mô hình 

chính, gồm: (i) các mô hình hồi quy tuyến tính và phi tuyến (hồi quy đơn biến, đa 

biến và mô hình cộng tính tổng quát (GAM), và (ii) mô hình học máy Random Forest 

(RF). Các thuật toán học máy khác (SVM, ANN, XGBoost…) cũng như các phương 

pháp mô hình hóa vật lý hoặc cơ học không nằm trong phạm vi thực hiện. Bên cạnh 

đó, do hạn chế về thời gian và nguồn lực, nghiên cứu chưa triển khai đánh giá đầy đủ 

sai số và độ bất định của mô hình bao gồm toàn bộ các nguồn sai số phát sinh từ điều 

tra ô mẫu, mô hình hóa AGB và quá trình lập bản đồ CO₂. 

4. Ý nghĩa khoa học và thực tiễn 

Ý nghĩa khoa học: 

Góp phần làm rõ mối quan hệ giữa đặc trưng ảnh viễn thám và sinh khối rừng, 

từ đó phát triển các mô hình ước tính khả năng hấp thụ CO₂ dựa trên nền tảng thống 

kê hiện đại và nền tảng dữ liệu mở; 

Đóng góp cơ sở lý luận và phương pháp luận cho việc tích hợp viễn thám đa 

nguồn và GIS trong đánh giá dịch vụ hệ sinh thái rừng, đặc biệt là dịch vụ hấp thụ 

các-bon và chương trình trung hòa các-bon. 

Ý nghĩa thực tiễn: 

Kết quả nghiên cứu hỗ trợ cơ quan quản lý nhà nước, chủ rừng và các bên 

liên quan trong việc xác định tiềm năng hấp thụ CO₂ của rừng theo thời gian, phục 

vụ hiệu quả chính sách chi trả dịch vụ các-bon rừng, quản lý rừng bền vững và trong 

các chương trình trung hòa các-bon; 

Mô hình được xây dựng từ nghiên cứu có thể được áp dụng mở rộng cho các 

khu vực có điều kiện sinh thái tương đồng, cũng như các kiểu rừng khác nhằm góp 

phần nâng cao hiệu quả quản lý tài nguyên rừng trên quy mô rộng. 
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5. Những điểm mới của nghiên cứu 

Nghiên cứu này đóng góp một số điểm mới nổi bật như sau: 

✓ Xây dựng và thử nghiệm phương pháp tích hợp dữ liệu viễn thám đa nguồn 

(Sentinel-1, Landsat), GIS và mô hình học máy Random Forest để ước 

tính nhanh và tương đối tin cậy sinh khối AGB và lượng CO₂ hấp thụ của 

rừng thường xanh ở quy mô tỉnh. 

✓ Xác định được một số đặc trưng ảnh viễn thám có mối quan hệ chặt chẽ 

với sinh khối AGB và khả năng hấp thụ CO₂ của RTX tỉnh Đắk Lắk, góp 

phần hoàn thiện cơ sở khoa học cho giám sát các-bon rừng dựa trên dữ 

liệu vệ tinh. 

✓ Cung cấp bằng chứng khoa học hỗ trợ việc định giá và theo dõi dịch vụ hấp 

thụ các-bon của rừng, phù hợp với bối cảnh Việt Nam đang thực hiện các 

cam kết quốc tế của Việt Nam về giảm phát thải và trung hòa các-bon trong 

dài hạn. 

6. Cấu trúc của luận án 

Luận án gồm có các phần được bố cục như sau: 

Mở đầu: Trình bày bối cảnh nghiên cứu, lý do lựa chọn đề tài, mục tiêu – câu 

hỏi – giả thuyết nghiên cứu, phạm vi, giới hạn và đóng góp khoa học của đề tài. 

Chương 1. Tổng quan tài liệu: Tổng hợp các công trình nghiên cứu liên 

quan trong và ngoài nước về ước tính sinh khối rừng, khả năng hấp thụ CO₂, viễn 

thám và ứng dụng GIS trong ước tính sinh khối. 

Chương 2. Cơ sở lý thuyết và phương pháp nghiên cứu: Trình bày đặc 

điểm tự nhiên của khu vực nghiên cứu; nguồn, loại và cách xử lý dữ liệu viễn thám, 

dữ liệu thực địa và dữ liệu phụ trợ khác; Khung lý thuyết, khái niệm, các công thức 

chuyển đổi AGB – các-bon – CO₂, quy trình xử lý dữ liệu viễn thám và phương pháp 

xây dựng mô hình ước tính. 
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Chương 3. Kết quả và thảo luận: Trình bày các kết quả chính: mô hình ước 

tính AGB, bản đồ phân bố sinh khối, lượng CO₂ hấp thụ, phân tích và bàn luận kết 

quả. 

Kết luận và kiến nghị: Tóm tắt các phát hiện chính, đóng góp thực tiễn – 

khoa học, hạn chế của nghiên cứu và hướng nghiên cứu tiếp theo.
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CHƯƠNG 1. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU 

1.1.  Nhu cầu xác định sinh khối, các-bon rừng 

Rừng là một trong những bể chứa các-bon lớn nhất trên lục địa và đóng vai 

trò quan trọng trong việc loại bỏ CO₂ khỏi khí quyển. Theo Báo cáo Tổng hợp lần 

thứ sáu của Tổ chức liên chính phủ về Biến đổi khí hậu (IPCC, 2023), để đạt mục 

tiêu phát thải ròng bằng không, các quốc gia cần đồng thời giảm nhanh phát thải khí 

nhà kính và tăng cường bảo vệ, phục hồi các bể chứa các-bon tự nhiên, trong đó rừng 

là trụ cột. Điều này đòi hỏi phải nắm bắt chính xác phân bố sinh khối và năng lực tích 

lũy các-bon của rừng ở nhiều cấp độ nhằm hỗ trợ lập kế hoạch, theo dõi và đánh giá 

hiệu quả các hành động giảm phát thải (IPCC, 2023). 

Các đánh giá gần đây cho thấy lượng các-bon lưu trữ trong rừng toàn cầu vẫn 

thấp hơn tiềm năng, đặc biệt tại vùng nhiệt đới, nơi còn nhiều cơ hội phục hồi rừng 

và cải thiện cấu trúc quần xã. Đồng thời, các biến cố như cháy rừng, hạn hán kéo dài, 

suy thoái rừng và mất rừng đã làm suy giảm khả năng hấp thụ CO₂ của hệ sinh thái 

rừng trong một số giai đoạn, cho thấy sự dễ tổn thương của các bể chứa tự nhiên 

(Harris và cộng sự, 2021; IPCC, 2023). Điều này nhấn mạnh nhu cầu theo dõi sinh 

khối và các-bon rừng liên tục, chính xác và ở độ phân giải cao. 

Trong thực tiễn quản lý, việc ước lượng sinh khối đóng vai trò quan trọng để 

cân bằng giữa sản xuất gỗ và duy trì chức năng hấp thụ các-bon. Tuy nhiên, dữ liệu 

hiện trường truyền thống thường không đủ đại diện cho sự đa dạng về loài cây, tuổi 

rừng, tầng tán và điều kiện địa hình, gây khó khăn khi xây dựng các phương án quản 

lý tối ưu. Xu hướng nghiên cứu hiện nay hướng đến tích hợp dữ liệu đa nguồn, gồm 

đo đạc hiện trường, ảnh vệ tinh quang học, dữ liệu radar và LiDAR (mặt đất, 

UAV,…), nhằm khắc phục hiện tượng bão hòa tín hiệu quang học và mô tả tốt hơn 

cấu trúc thẳng đứng của rừng (Lefsky, 2007; Mo và cộng sự, 2023). 

Tại Việt Nam, sự đa dạng hệ sinh thái rừng cùng áp lực từ suy thoái rừng, 

chuyển đổi đất và biến đổi khí hậu làm cho nhu cầu xác định phân bố sinh khối và 



8 

 

 

 

động thái các-bon theo không gian trở nên đặc biệt quan trọng. Đây là cơ sở để quy 

hoạch sử dụng và quản lý rừng, phân vùng bảo vệ – phục hồi – khai thác và giảm 

đánh đổi giữa mục tiêu kinh tế và khí hậu. Đồng thời, dữ liệu sinh khối là thành phần 

quan trọng của hệ thống kiểm kê khí nhà kính quốc gia và báo cáo REDD⁺. 

Đáng chú ý, Việt Nam đã tuyên bố cam kết đạt phát thải ròng bằng “0” vào 

năm 2050 tại COP26. Cam kết này được thể chế hóa trong Chiến lược quốc gia về 

biến đổi khí hậu đến năm 2050, ban hành theo Quyết định số 896/QĐ-TTg ngày 

26/7/2022 và Quyết định số 888/QĐ-TTg ngày 25/7/2022 của Thủ tướng Chính phủ. 

Để triển khai các mục tiêu này, Chính phủ đã ban hành Nghị định số 06/2022/NĐ-

CP ngày 07/01/2022 và Nghị định số 119/2025/NĐ-CP ngày 09/6/2025, quy định cụ 

thể về giảm phát thải khí nhà kính, phát triển thị trường các-bon và các cơ chế quản 

lý liên quan. Đồng thời, Chỉ thị số 13/CT-TTg ngày 02/5/2024 và Quyết định số 

232/QĐ-TTg ngày 24/01/2025 tiếp tục nhấn mạnh vai trò then chốt của rừng trong 

tăng hấp thụ các-bon, giảm phát thải từ mất rừng và suy thoái rừng, cũng như yêu cầu 

cấp thiết về xây dựng cơ sở dữ liệu các-bon rừng minh bạch, chính xác để phục vụ 

thị trường các-bon và hoàn thiện hệ thống MRV (Measurement, Reporting and 

Verification) trong lĩnh vực sử dụng đất và lâm nghiệp. 

Bên cạnh yếu tố chính sách, động lực kinh tế từ thị trường tín chỉ các-bon 

toàn cầu, cơ chế CORSIA (Chương trình Bù đắp và Giảm thiểu Carbon cho Hàng 

không Quốc tế), PFES (Chi trả dịch vụ môi trường rừng) và các dự án các-bon tự 

nguyện đang thúc đẩy nhu cầu có dữ liệu sinh khối tin cậy. Để phát triển tín chỉ các-

bon chất lượng cao, các đơn vị quản lý rừng cần cung cấp bằng chứng định lượng về 

mức hấp thụ CO₂ và biến động sinh khối theo thời gian, dựa trên phương pháp minh 

bạch và có thể kiểm chứng độc lập (Phạm Thu Thủy, 2023). Thực tiễn triển khai một 

số giao dịch tín chỉ các-bon rừng ở Việt Nam cho thấy tính chính xác của dữ liệu sinh 

khối quyết định trực tiếp tới chất lượng tín chỉ. 

Ở quy mô quốc gia, thiếu dữ liệu chi tiết hoặc sai lệch trong ước lượng sinh 

khối có thể ảnh hưởng đến báo cáo kiểm kê khí nhà kính, kết quả REDD⁺ và tiến độ 
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thực hiện mục tiêu phát thải ròng bằng không. Do đó, các xu hướng hiện nay tập trung 

vào chuẩn hóa phương pháp ước lượng, ứng dụng dữ liệu viễn thám đa nguồn, tăng 

cường giám sát liên tục và kiểm định độc lập, đáp ứng yêu cầu của các thị trường các-

bon quốc tế (Li và Zhang, 2024). 

Tóm lại, trong bối cảnh yêu cầu giảm phát thải toàn cầu và mục tiêu phát thải 

ròng bằng không vào năm 2050 của Việt Nam, việc xác định sinh khối và các-bon 

rừng một cách chính xác, minh bạch và có thể kiểm chứng là yêu cầu cấp thiết. 

Phương pháp kết hợp dữ liệu đa nguồn và hệ thống giám sát đáng tin cậy là nền tảng 

quan trọng cho quản lý rừng bền vững, phát triển thị trường các-bon và thực thi cam 

kết khí hậu quốc gia. 

1.2. Ước tính sinh khối, các-bon cây rừng 

Các mô hình ước tính sinh khối thường được thực hiện một cách chính xác 

thông qua sinh khối thân cây, do đó, các yếu tố đo đếm được sử dụng trong quá trình 

tính toán trữ lượng cây đứng được coi là những nhân tố đáng tin cậy nhất (Penner và 

cộng sự, 1997). Phương pháp chặt hạ cây mẫu (destructive sampling) vẫn được xem 

là cách tiếp cận chính xác nhất trong việc xác định sinh khối và lượng các-bon của 

cây rừng, vì cho phép đo đạc trực tiếp khối lượng khô và tỷ lệ các-bon trong từng bộ 

phận (thân, cành, lá, rễ). Tuy nhiên, phương pháp này bị hạn chế bởi chi phí cao, yêu 

cầu nhân lực lớn và tác động tiêu cực đến hệ sinh thái, do đó chỉ được áp dụng ở quy 

mô nhỏ để hiệu chỉnh các mô hình không chặt hạ (non-destructive models) (Dutcă và 

cộng sự, 2020). 

Số lượng và cấu trúc mẫu chặt hạ phụ thuộc vào đặc trưng sinh thái và phạm 

vi ứng dụng mô hình. Dutcă và cộng sự (2020) khuyến nghị số lượng cây mẫu cần 

thiết nằm trong khoảng 20–150 cây để đảm bảo độ tin cậy thống kê từ 90–95%, trong 

khi Picard và cộng sự (2012) cho rằng khoảng 100 cây phân bố đồng đều theo các 

cấp kính là tối ưu. Đối với rừng thuần loài hoặc đồng tuổi, việc lấy mẫu đồng đều 

theo cấp kính giúp giảm sai số nội tại; trong khi đó, ở rừng khác tuổi hoặc đa loài, 

cần phân bố mẫu theo tiết diện ngang (basal area) hoặc mật độ loài chiếm ưu thế 
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(Basuki và cộng sự, 2009). 

Các phép đo sinh khối tươi, tỷ lệ khô và hàm lượng các-bon của từng bộ phận 

cây được thực hiện theo quy trình chuẩn hóa, thường sấy ở nhiệt độ 80 - 105°C cho 

đến khi đạt khối lượng ổn định (Henry và cộng sự, 2015). Những dữ liệu này là cơ sở 

để hiệu chỉnh và kiểm chứng mối quan hệ giữa sinh khối và các biến điều tra lâm 

phần như đường kính ngang ngực (DBH), chiều cao cây (H), diện tích tán lá (CA), 

đường kính tán (CD) và dung trọng gỗ (WD) (Chave và cộng sự, 2014). 

Trong các mô hình sinh khối, DBH thường là biến độc lập có mức giải thích 

cao nhất vì có tương quan thuận mạnh với sinh khối cây rừng (Chave và cộng sự, 

2014). Biến H giúp cải thiện độ chính xác, đặc biệt trong các vùng có biến động lập 

địa lớn (Basuki và cộng sự, 2009; Kralicek và cộng sự, 2017), trong khi WD đóng 

vai trò chuyển đổi từ thể tích tươi sang sinh khối khô và phản ánh đặc tính cơ học – 

sinh lý của loài cây (Henry và cộng sự, 2015). Một số nghiên cứu gần đây cũng cho 

thấy việc bổ sung biến CD hoặc CA có thể tăng độ chính xác của mô hình, vì hai cây 

có cùng DBH và H có thể có sinh khối khác nhau do khác biệt về tán lá và quang hợp. 

Các mô hình sinh trắc thường được thể hiện dưới dạng tổng quát: 

𝑦𝑖 = 𝑓(𝑥𝑗)         (1.1) 

Trong đó: 

𝑦𝑖: là sinh khối khô hoặc lượng các-bon  

𝑥𝑗: là các biến dự báo (predictors). 

Các hàm thường dùng gồm hàm lũy thừa (Power), lô-ga-rít, hàm mũ, hoặc 

các hàm kết hợp. Trong số đó, hàm Power vẫn là lựa chọn phổ biến nhất cho vùng 

nhiệt đới nhờ tính đơn giản và khả năng mô tả quan hệ phi tuyến giữa sinh khối và 

DBH (Chave và cộng sự, 2014; Picard và cộng sự, 2015). 

Ở các quốc gia ôn đới, nơi tổ thành loài ít phức tạp, các mô hình sinh khối 

loài riêng biệt đã được thiết lập cho hầu hết cây bản địa (Jenkins và cộng sự, 2003). 

Ngược lại, ở các khu rừng nhiệt đới đa dạng loài như Việt Nam, việc xây dựng mô 

hình cho từng loài riêng biệt là bất khả thi, nên hướng tiếp cận hiện nay tập trung vào 
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các mô hình chung đa loài (multi-species models) hoặc mô hình vùng sinh thái (eco-

region models) (Chave và cộng sự, 2014; Kralicek và cộng sự, 2017). 

Trong hơn một thập kỷ qua, Việt Nam đã đạt được nhiều tiến bộ trong phát 

triển mô hình sinh khối – các-bon phục vụ cho chương trình REDD+. Các nghiên cứu 

của Võ Đại Hải (2009), Bảo Huy và cộng sự (2012), Võ Đại Hải và Đặng Thịnh Triều 

(2012), Bảo Huy (2013, 2016), Huỳnh Nhân Trí (2014), Phạm Tuấn Anh & Bảo Huy 

(2016) đã thiết lập hệ thống mô hình cho RTX, có khả năng ước tính riêng biệt sinh 

khối phần trên mặt đất (AGB) và dưới mặt đất (BGB). Các công trình này sử dụng 

kết hợp DBH, H, WD cùng các biến dễ đo đạc tại hiện trường để tăng khả năng áp 

dụng cộng đồng và giám sát lâu dài. Gần đây hơn, các mô hình tích hợp dữ liệu viễn 

thám và biến sinh thái đã được chứng minh là cải thiện đáng kể độ chính xác và giảm 

sai số hệ thống trong ước lượng sinh khối rừng. 

Việc ước tính BGB thường dựa vào hệ số chuyển đổi (R) từ sinh khối phần 

trên mặt đất, theo hướng dẫn của IPCC (2019): 

BGB = R×AGB      (1.2) 

Trong đó, R ≈ 0,37 đối với rừng mưa nhiệt đới và 0,20 - 0,24 đối với rừng 

nửa rụng lá ẩm. Tuy nhiên, nghiên cứu khác cho thấy R có thể biến thiên mạnh theo 

kích thước và loài cây, đòi hỏi phải hiệu chỉnh theo vùng sinh thái (Dietz & Kuyah, 

2011). Ở Việt Nam, mô hình BGB địa phương cho RTX đã được phát triển bởi Bảo 

Huy (2013) và mở rộng bởi Kralicek và cộng sự (2017) cho cả RTX và rừng khộp, 

tạo nền tảng cho việc đánh giá khả năng lưu trữ và hấp thụ CO₂ của rừng tự nhiên. 

Đối với kiểu RTX ở Tây Nguyên, Bảo Huy và cộng sự (2012) đã thiết lập mô 

hình ước tính sinh khối của rừng thông qua các nhân tố DBH, H và WD. Kết quả cho 

thấy AGB được ước lượng tốt thông qua các biến số này với hệ số tương quan cao và 

cho kết quả ước lượng tốt hơn so với mô hình chung cho rừng nhiệt đới của Brown 

và Chave. Các mô hình được đề xuất sử dụng là: 

AGB = exp(-2,23927 + 2,49596*log(DBH))     (1.3) 
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Log(AGB) = -2,74348 +0,693879*log(H*DBH2) + 0,367445*log(WD*DBH2) (1.4) 

Log(AGB) = -2,9766 + 0,535797*log(DBH) + 0,759321*log(H*DBH2) (1.5) 

Log(AGB) = -2,05364 + 1,76966*log(DBH) + 0,376371*log(WD*DBH2)  (1.6) 

Tổng thể, chuỗi các nghiên cứu này khẳng định tầm quan trọng của việc chuẩn 

hóa mô hình sinh khối địa phương, kết hợp phương pháp chặt hạ mẫu hạn chế, phân 

tích hồi quy phi tuyến và dữ liệu viễn thám, nhằm hướng tới ước lượng chính xác cho 

quản lý các-bon rừng trong bối cảnh REDD+ và phát thải ròng bằng không (Net 

Zero). 

1.3.  Ứng dụng GIS và viễn thám trong ước tính sinh khối cây rừng 

Trong hơn ba thập kỷ qua, công nghệ viễn thám và hệ thống thông tin địa lý 

(GIS) đã trở thành công cụ quan trọng trong nghiên cứu và quản lý tài nguyên rừng. 

Các nguồn dữ liệu vệ tinh như Landsat, Sentinel, SPOT, MODIS, ASTER, hay các 

ảnh độ phân giải cao như IKONOS, QuickBird, WorldView cung cấp chuỗi quan sát 

dài hạn, diện bao phủ rộng và khả năng cập nhật liên tục, giúp giám sát hiện trạng và 

biến động rừng hiệu quả hơn nhiều so với các phương pháp truyền thống dựa hoàn 

toàn vào điều tra thực địa (Huang và cộng sự, 2019; Li và cộng sự, 2012). 

Trong lĩnh vực lâm nghiệp, viễn thám được ứng dụng rộng rãi để phân loại 

thảm phủ, lập bản đồ hiện trạng rừng, theo dõi suy thoái, và đặc biệt là ước tính sinh 

khối – các-bon rừng. Độ chính xác của phân loại phụ thuộc vào độ phân giải ảnh, 

phương pháp phân loại và số lớp thông tin; ảnh độ phân giải cao thường cho kết quả 

tốt hơn nhưng chi phí lớn, trong khi các hệ thống miễn phí như Landsat và Sentinel 

có độ phân giải trung bình nhưng ổn định theo thời gian, phù hợp cho nghiên cứu dài 

hạn và quản lý rừng ở quy mô tỉnh, quốc gia (Pan và cộng sự, 2011). 

Ước tính sinh khối từ viễn thám chủ yếu dựa trên việc phân tích mối quan hệ 

giữa đặc trưng phổ và cấu trúc được trích xuất từ ảnh vệ tinh, bao gồm các chỉ số thực 

vật như NDVI, EVI; phản xạ phổ ở các dải đỏ, cận hồng ngoại và hồng ngoại trung; 

đặc trưng cấu trúc tán; hoặc tín hiệu tán xạ của ra-đa SAR. Nhiều nghiên cứu đã 

chứng minh mối tương quan chặt chẽ giữa các chỉ số phổ và biến số sinh khối như 
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mật độ tán lá, trữ lượng và AGB (Tian và cộng sự, 2022; Xiao và cộng sự, 2019). Các 

mô hình thống kê truyền thống và các kỹ thuật học máy, bao gồm hồi quy đa biến, k-

nearest neighbour (kNN), cây quyết định, Random Forest (RF), Support Vector 

Machine (SVM) và các thuật toán học tập tổ hợp (ensemble), đã được ứng dụng rộng 

rãi trong dự đoán sinh khối, với độ chính xác thay đổi tùy theo loại ảnh, điều kiện tán 

rừng và mức độ phức tạp cấu trúc thảm thực vật (Molotoks và cộng sự, 2018). 

Viễn thám đóng vai trò như lớp “lấy mẫu đầu tiên”, hỗ trợ phân chia rừng 

thành các khu vực tương đối đồng nhất trước khi bố trí các ô điều tra thực địa, từ đó 

giảm chi phí và tăng hiệu quả kiểm kê (Nguyễn Thị Thanh Hương, 2011). Sự kết hợp 

giữa dữ liệu thực địa và ảnh vệ tinh là hướng tiếp cận được khuyến nghị trong các 

hướng dẫn của IPCC và chương trình REDD+, đặc biệt trong giám sát mất rừng, suy 

thoái rừng và kiểm kê các-bon phục vụ báo cáo khí nhà kính quốc gia. 

Bên cạnh dữ liệu quang học, ảnh radar khẩu độ tổng hợp (SAR) như Sentinel-

1 cho phép quan sát rừng trong điều kiện nhiều mây, vốn đặc trưng ở vùng nhiệt đới, 

và đã được chứng minh có hiệu quả trong ước tính sinh khối, đặc biệt tại các hệ sinh 

thái rừng rậm nơi tín hiệu radar nhạy với cấu trúc tầng tán, mật độ gỗ và độ thô ráp 

bề mặt (Houghton và cộng sự, 2009; Payne và cộng sự, 2019). Radar ở các tần số như 

C-band, L-band hoặc P-band có khả năng xuyên qua tán ở các mức độ khác nhau, hỗ 

trợ mô tả cấu trúc rừng vượt trội hơn so với dữ liệu quang học trong điều kiện bão 

hòa phổ. Do đó, nhiều nghiên cứu gần đây hướng đến tích hợp dữ liệu quang học và 

radar nhằm tận dụng thế mạnh bổ sung của hai nguồn tín hiệu, qua đó nâng cao độ 

chính xác phân loại thảm rừng và mô hình hóa AGB (Ho và cộng sự, 2016; Santoro 

và cộng sự, 2021). 

GIS giữ vai trò trung tâm trong việc tích hợp, xử lý và phân tích dữ liệu không 

gian, hỗ trợ xây dựng các bản đồ biến động rừng, bản đồ sinh khối AGB, bản đồ hấp 

thụ CO₂, cũng như đánh giá các yếu tố ảnh hưởng đến biến đổi rừng như địa hình, 

dân số, cơ sở hạ tầng hay khoảng cách đến đường giao thông. Các nghiên cứu đã cho 

thấy GIS có thể được sử dụng hiệu quả để dự báo rủi ro mất rừng, phân tích xu thế 
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biến động sinh khối và xây dựng bản đồ các-bon ở nhiều quy mô khác nhau, từ quy 

mô lô rừng đến cấp vùng (Hansen và cộng sự, 2013). 

Sự kết hợp giữa viễn thám và GIS đang trở thành hướng tiếp cận tất yếu trong 

giám sát sinh khối và các-bon rừng ở quy mô lớn nhờ khả năng bao phủ rộng, độ tin 

cậy cao và chi phí hợp lý. Phương pháp tích hợp này đặc biệt quan trọng trong bối 

cảnh gia tăng nhu cầu kiểm kê các-bon, chi trả dịch vụ môi trường rừng và thực hiện 

các cam kết giảm phát thải theo REDD⁺, Chiến lược phát triển lâm nghiệp và mục 

tiêu quốc gia về phát thải ròng bằng không của Việt Nam. Nhờ ưu thế về tích hợp đa 

nguồn dữ liệu, GIS cung cấp nền tảng vững chắc để hỗ trợ ra quyết định, lập kế hoạch 

và theo dõi thực hiện các chính sách quản lý rừng và khí hậu (FAO, 2020). 

1.3.1. Nguyên tắc Ước tính AGB sử dụng dữ liệu Viễn thám 

Trái ngược với ước tính sinh khối rừng trực tiếp, các kỹ thuật viễn thám 

thường đánh giá AGB rừng thông qua việc xây dựng và sử dụng các thông số như 

sóng phản xạ bề mặt, VIs, LAI, độ che phủ thực vật, chiều cao cây và đường kính tán 

cây nhằm thiết lập các mối quan hệ đóng vai trò là đại diện cho AGB (Zheng và cộng 

sự, 2004). Các kỹ thuật viễn thám được sử dụng để ước tính AGB của rừng được 

minh họa trong Hình 1.1.  

 

Nguồn: Tian và cộng sự (2023)                 

Hình 1.1. Minh họa ước tính AGB bằng kỹ thuật viễn thám 
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Ngoài thông tin các kênh ảnh đơn phổ của dữ liệu viễn thám quang học, AGB 

thường được ước tính thông qua các chỉ số thực vật (VIs) bao gồm chỉ số khác biệt 

thực vật chuẩn hóa (NDVI – Normal Diffences Vegetation Index), chỉ số khác biệt 

thực vật (DVI - Diffences Vegetation Index) và chỉ số thực vật tăng cường (EVI – 

Enhance Vegetation Index) (Xu và Cao, 2006; Ghasemi và cộng sự, 2011). Tuy 

nhiên, khi thảm thực vật dày lên, sự hấp thụ mạnh các bước sóng ở dải bước sóng 

màu đỏ dẫn đến hiệu ứng bão hòa, do đó làm giảm độ chính xác trong ước tính AGB 

(Zheng và cộng sự, 2004). Vì vậy, một số chỉ số thực vật khác như NDVI chuẩn hóa 

lại (RNDVI – Renormalized NDVI) và tỷ lệ đơn giản sửa đổi (MSR) đã được phát 

triển để cải thiện độ chính xác của ước tính sinh khối trong các khu vực có thảm thực 

vật dày (Chen và cộng sự, 2015; Ebi và cộng sự, 2021). Đối với các khu vực có thảm 

thực vật thưa thớt, VI vuông góc dựa trên biến đổi trực giao VI (PVI – Perpendicular 

VI), VI hiệu chỉnh đất (SAVI – Soil-adjusted VI) và SAVI điều chỉnh (MSAVI – 

Modified SAVI) được sử dụng để giảm thiểu nhiễu từ khí quyển và nền đất (Ferreira 

và cộng sự, 2023; Markus và cộng sự, 2017). Hơn nữa, thông tin kết cấu ảnh viễn 

thám ngày càng được sử dụng nhiều hơn trong ước tính AGB của rừng (Knott và 

cộng sự, 2023; Sibanda và cộng sự, 2015). 

Các thông số bổ sung cần thiết cho ước tính AGB bao gồm các thông số mô 

tả cấu trúc rừng, chẳng hạn như chiều cao cây, đường kính ngang ngực (DBH – 

Diameter at Breast Height) và chiều cao cây. Chiều cao cây không chỉ phản ánh các 

đặc tính sinh học và khả năng sinh trưởng của cây, mà còn cho biết trữ lượng rừng 

(Fassnacht và cộng sự, 2014). Các nghiên cứu trước đây đã chứng minh AGB có mối 

liên hệ với chiều cao cây (thông qua một hệ số) ở các khu rừng rậm bằng cách sử 

dụng dữ liệu khảo sát về tuổi cây và chiều cao cây trung bình (Fang và cộng sự, 2021). 

Tuy nhiên, rất khó để xác định chiều cao cây ở quy mô lớn, đặc biệt là ở các khu rừng 

kín có chiều cao cây lớn; do đó, thông thường chỉ xác định chiều cao cây của một số 

cây cá thể và sau đó ước tính chiều cao tổng thể của ô mẫu bằng cách thiết lập mối 

tương quan giữa chiều cao cây và DBH (Fassnacht và cộng sự, 2014). Hơn nữa, 

phương trình sinh học hàm mũ thể hiện tương quan giữa AGB và chiều cao cây được 
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xây dựng ở quy mô ô mẫu vẫn được áp dụng trên quy mô lớn (Sandberg và cộng sự, 

2011). Đây là một lợi thế đáng kể của việc ước tính AGB bằng viễn thám kết hợp với 

các phép đo mặt đất (Claverie và cộng sự, 2018; Huang và cộng sự, 2018; Zheng và 

cộng sự, 2004). Trong những năm gần đây, viễn thám siêu cao tần và viễn thám 

LiDAR (Light Detection and Ranging) đã được sử dụng rộng rãi để ước tính AGB. 

Chiều cao cây có thể được lấy chính xác và thuận tiện từ dữ liệu InSAR và LiDAR 

(Astrup và cộng sự, 2014; Zaki và cộng sự, 2016). Ngoài ra, chiều cao tán cây đã 

được chứng minh là cung cấp ước tính AGB chính xác (Smith và cộng sự, 2008). 

Đáng chú ý, chiều cao tán không phải là chiều cao cây; Nó không chỉ phụ thuộc vào 

chiều cao của cây, mà còn phụ thuộc vào tán cây và mật độ cây gỗ (Zheng và cộng 

sự, 2004). 

Nhìn chung, AGB được ước tính bằng cách sử dụng dữ liệu viễn thám thu 

được trên một dải bước sóng điện từ rộng, từ ánh sáng khả kiến đến vi sóng (Ghi chú: 

MLA: phương pháp học máy; NIR: cận hồng ngoại; SWIR: hồng ngoại sóng ngắn; TIR: hồng ngoại 

nhiệt; VIs: chỉ số thực vật; LAI: chỉ số diện tích lá; SIF: huỳnh quang diệp lục do năng lượng mặt 

trời gây ra; GPP: tổng tăng trưởng hàng năm của rừng. (Nguồn Xiao và cộng sự, 2019) 

Hình 1.2). Ngoài các thông số quá trình sinh thái ở trên, các yếu tố môi trường 

(ví dụ: lượng mưa, nhiệt độ và áp suất khí quyển), địa hình và các yếu tố sinh học (ví 

dụ: đa dạng loài) cũng ảnh hưởng đến ước tính AGB của rừng. Cụ thể, các yếu tố như 

lượng mưa, nhiệt độ, độ cao và độ dốc thúc đẩy mô hình phân bố loài cây, trong khi 

tài nguyên đất và cường độ bức xạ xác định điều kiện tăng trưởng của thảm thực vật, 

tất cả đều ảnh hưởng đến AGB rừng (Messinger và cộng sự, 2016).  
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Ghi chú: MLA: phương pháp học máy; NIR: cận hồng ngoại; SWIR: hồng ngoại sóng ngắn; TIR: 

hồng ngoại nhiệt; VIs: chỉ số thực vật; LAI: chỉ số diện tích lá; SIF: huỳnh quang diệp lục do năng 

lượng mặt trời gây ra; GPP: tổng tăng trưởng hàng năm của rừng. (Nguồn Xiao và cộng sự, 2019) 

Hình 1.2.  Sử dụng phổ điện từ ước tính sinh khối rừng trên mặt đất 

1.3.2. Nguồn dữ liệu ảnh viễn thám sử dụng ước lượng AGB 

AGB của rừng hiện được ước tính bằng nhiều dạng dữ liệu viễn thám khác 

nhau, bao gồm dữ liệu quang học thụ động (đa phổ, siêu phổ) và dữ liệu radar chủ 

động; ngoài ra một số nghiên cứu cũng sử dụng dữ liệu LiDAR thu nhận từ mặt đất, 

trên không hoặc vệ tinh (Abbas và cộng sự, 2020; Sadeghi và cộng sự, 2018; Simard 

và cộng sự, 2019; Xu và Cao, 2006; Zheng và cộng sự, 2004). Mỗi nguồn dữ liệu 

cung cấp thông tin đặc trưng về phổ phản xạ, tín hiệu tán xạ hoặc cấu trúc thẳng đứng 

của rừng, và có thể được kết hợp để nâng cao độ chính xác mô hình ước tính sinh 

khối. 

1.3.2.1. Ảnh viễn thám quang học thụ động 

Viễn thám thụ động là hệ thống viễn thám không tự mang nguồn bức xạ. Cụ 

thể, nó là một hệ thống viễn thám trong đó thiết bị thu nhận và ghi lại thông tin điện 

từ phát ra từ chính vật thể mục tiêu hoặc phản xạ từ nguồn bức xạ tự nhiên (mặt trời) 

trong quá trình viễn thám. Viễn thám quang học thụ động được sử dụng rộng rãi để 
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ước tính AGB rừng vì nó rất nhạy cảm với các đặc tính của tán cây. Dữ liệu có độ 

phân giải thô (250–8000 m, ví dụ: MODIS, AVHRR) thường được sử dụng để ước 

tính AGB rừng ở quy mô khu vực hoặc toàn cầu (Chopping và cộng sự, 2022; 

Badreldin và Sanchez-Azofeifa, 2015; Claverie và cộng sự, 2018; Zhao và cộng sự, 

2009). Hơn nữa, dữ liệu độ phân giải không gian trung bình (~ 30 m, như ảnh Landsat, 

Sentinel-2 Multispectral Imager (MSI) và Terra/Aqua ASTER) được áp dụng cho các 

ước tính AGB rừng quy mô địa phương và khu vực cho các hệ sinh thái khác nhau 

(Frumkin và cộng sự, 2019; Luo và cộng sự, 2017; Singh và cộng sự, 2014). Dữ liệu 

có độ phân giải không gian cao (<5 m, như IKONOS, QuickBird và WorldView-2) 

thường được sử dụng để tính toán AGB rừng quy mô lâm phần (Dube và Mutanga, 

2015; Houghton và cộng sự, 2009). Tuy nhiên, dữ liệu như vậy thường là các vệ tinh 

thương mại, điều này hạn chế ứng dụng rộng rãi hơn của chúng trong lĩnh vực ước 

tính AGB rừng. 

Phản xạ quang phổ, VIs, kết cấu không gian và đặc tính tán rừng là các biến 

số chính có được thông qua viễn thám quang học thụ động để ước tính AGB. VIs đã 

được phát triển để góp phần đại diện cho điều kiện thực vật, chẳng hạn như nền đất, 

khí quyển và địa hình (Bao Huy và cộng sự, 2022; Gao và cộng sự, 2018; Zhang và 

cộng sự, 2013). Ngoài các VIs thường được sử dụng (ví dụ: NDVI, EVI, SR và chỉ 

số chênh lệch diệp lục), biến đổi phổ (ST) và phân tích thành phần chính (PCA – 

Principal Component Analysis) cũng thường được sử dụng để ước tính AGB (Xu và 

Cao, 2006). Kết cấu không gian ảnh mô tả các đặc điểm không gian của hình ảnh và 

có thể phản ánh lượng AGB của rừng ở một mức độ nào đó. Thông tin kết cấu này 

có thể được trích xuất bằng ma trận cấp độ xám, thường sử dụng kích thước cửa sổ 3 

× 3 (Price và cộng sự, 2017). Ngoài ra, các nghiên cứu trước đây đã cải thiện độ chính 

xác của các ước tính AGB bằng cách bao gồm các chỉ số phản ánh các thuộc tính tán 

rừng, chẳng hạn như LAI, mật độ tán rừng (FCD – Forest Canopy Density) và độ che 

phủ rừng (Bouvet và cộng sự, 2018; Li và cộng sự, 2019). 

Viễn thám quang học là một trong những công cụ tốt nhất để ước tính AGB 
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rừng vì độ phân giải không gian khác nhau từ phạm vi rộng như MODIS đến chi tiết 

như Wordview, đa thời gian, phạm vi phủ sóng toàn cầu và chi phí thấp. Tuy nhiên, 

khả năng xuyên qua đối tượng kém, chủ yếu ghi lại thông tin về cấu trúc nằm ngang, 

do đó khó ước lượng được cấu trúc đứng của rừng, đồng thời bị ảnh hưởng bởi những 

yếu tố khác như mây, mưa. Hơn nữa, tín hiệu viễn thám quang học có thể trở nên bão 

hòa trong các khu rừng rậm rạp, dẫn đến việc đánh giá thấp hoặc quá cao mật độ sinh 

khối. Do đó, để ước tính chính xác AGB rừng bằng cách sử dụng dữ liệu viễn thám 

quang học thụ động cũng là một thách thức (Xu và Cao, 2006). 

1.3.2.2. Ảnh viễn thám siêu cao tần 

Trái ngược với viễn thám quang học, công nghệ viễn thám ra-đa (viễn thám 

chủ động) có khả năng thu nhận dữ liệu cả ngày lẫn đêm, ít bị ảnh hưởng bởi mây 

che, điều kiện khí tượng và cường độ bức xạ Mặt Trời. Nhờ đặc tính sử dụng sóng vi 

ba có bước sóng dài, viễn thám ra-đa còn cho phép sóng điện từ xuyên qua tán rừng 

và tương tác với các thành phần cấu trúc bên trong như cành, thân và mặt đất. Do đó, 

công nghệ này mang lại nhiều ưu thế trong việc mô tả cấu trúc rừng và ước tính sinh 

khối trên mặt đất (AGB), đặc biệt tại các khu vực nhiệt đới thường xuyên bị mây che 

phủ (Li và cộng sự, 2020; Zeng và cộng sự, 2022). 

Trong các ứng dụng lâm nghiệp, ảnh ra-đa khẩu độ tổng hợp (Synthetic 

Aperture Radar – SAR) được sử dụng rộng rãi để ước tính AGB thông qua phân tích 

hệ số tán xạ ngược. Mức độ và cơ chế tán xạ phụ thuộc chặt chẽ vào bước sóng (tần 

số) và trạng thái phân cực của tín hiệu SAR, do mỗi cấu phần của cây rừng tương tác 

khác nhau với sóng ra-đa. Hiện nay, các nghiên cứu ước tính AGB chủ yếu sử dụng 

dữ liệu SAR ở các băng tần X (9,6 GHz; 3,0 cm), C (5,6 GHz; 5,7 cm), S (3,0 GHz; 

10 cm), L (1,27 GHz; 23,5 cm) và P (0,435 GHz; 70,0 cm), kết hợp với các trạng thái 

phân cực HH, HV, VH và VV. 

Cụ thể, dải X chủ yếu tương tác với lá và lớp bề mặt của tán rừng, do đó phản 

ánh thông tin sinh khối ở tầng trên. Dải C có khả năng xuyên qua lá và chịu ảnh hưởng 

mạnh từ các cành nhỏ và cấu trúc dưới tán. Trong khi đó, dải L có độ xuyên thấu cao 
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hơn, cho phép tín hiệu tương tác với thân chính và các cành lớn, nên thường cho mối 

tương quan tốt hơn với AGB ở rừng có sinh khối trung bình đến cao. Băng tần P, với 

bước sóng dài nhất, có khả năng xuyên qua toàn bộ tán rừng và phần lớn tín hiệu tán 

xạ ngược xuất phát từ thân cây và tương tác giữa thân cây với mặt đất. 

Bên cạnh đó, bốn tổ hợp phân cực SAR gồm HH, HV, VH và VV phản ánh 

các cơ chế tán xạ khác nhau của thảm rừng. Trong đó, phân cực chéo (HV và VH) 

thường nhạy cảm hơn với cấu trúc không đồng nhất của tán rừng, trong khi phân cực 

đồng hướng (HH và VV) phản ánh mạnh hơn các bề mặt và cấu trúc định hướng rõ 

rệt (Ghosh và Behera, 2021). 

Các nghiên cứu trước đây đã phát hiện ra rằng dữ liệu đồng phân cực ngang 

và dọc (HH và VV) ở bước sóng dài hơn (ví dụ: băng tần P) rất nhạy cảm với điều 

kiện bề mặt thay đổi. Ngược lại, tín hiệu tán xạ ngược từ phân cực chéo (HV và VH) 

chủ yếu bao gồm nhiều tán xạ trong tán cây và ít bị ảnh hưởng bởi điều kiện bề mặt 

(Waring và cộng sự, 2010). Đối với các khu vực sinh khối thấp, chẳng hạn như đồng 

cỏ, đầm lầy, rừng tái sinh, tín hiệu tán xạ ngược ở bước sóng dài hơn thấp hơn so với 

dải C; do đó, dải C được ưu tiên để ước tính sinh khối ở các khu vực sinh khối thực 

vật thấp hơn (Ghosh và Behera, 2021).  

Dải C bị hạn chế bởi không có khả năng thâm nhập hiệu quả vào tán cây và 

mức độ bão hòa của nó (khoảng 60–70 Mg / ha). Tuy nhiên, những hạn chế này có 

thể được khắc phục bằng cách sử dụng các dải dài hơn có khả năng thâm nhập tán 

rừng cao hơn (ví dụ: băng L và băng P) (Huang và Chen, 2013). Các nghiên cứu đã 

chỉ ra rằng băng L và dải P thường bão hòa ở mức 100 Mg/ha đối với các cấu trúc 

rừng nhiệt đới không đồng nhất phức tạp (Schimel và cộng sự, 2015); tuy nhiên, mức 

bão hòa này tăng lên khoảng 250 Mg/ha đối với các lâm phần có cấu trúc đơn giản 

và ít loài chiếm ưu thế (Luo và cộng sự, 2021).  

Mặc dù sóng ra-đa có khả năng trích xuất thông tin cấu trúc thẳng đứng của 

rừng và được sử dụng rộng rãi trong ước tính sinh khối rừng, nhưng vẫn tồn tại nhiều 

khó khăn trong ước tính sinh khối rừng dựa trên SAR. SAR phản ánh độ nhám của 
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bề mặt che phủ đất và do đó, không thể phân biệt giữa các loại thảm thực vật. Hơn 

nữa, tín hiệu SAR dễ bị nhiễu từ điều kiện tốc độ, độ ẩm và nhiệt độ gió cao, do đó 

làm phức tạp việc ước tính sinh khối (Li và Mao, 2020). Ngoài ra, độ bão hòa tín hiệu 

SAR cũng ảnh hưởng đến độ chính xác ước tính sinh khối rừng (Xiao và cộng sự, 

2019). May thay, các nguồn dữ liệu đang được phát triển như PolInSAR và SAR chụp 

cắt lớp (TomoSAR), bao gồm BIOMASS, NISAR và TanDEM-L có thể khắc phục 

hiệu quả các vấn đề bão hòa trong ước tính AGB bằng cách đo trực tiếp các cấu trúc 

không gian rừng (Xu và Cao, 2006). Do đó, việc sử dụng PolInSAR và TomoSAR 

cho thấy nhiều hứa hẹn trong tương lai gần. 

Bên cạnh dữ liệu quang học và ra-đa, LiDAR cũng là nguồn dữ liệu quan 

trọng nhờ khả năng mô tả cấu trúc ba chiều của rừng. Tuy nhiên, chi phí cao và mức 

độ sẵn có còn hạn chế khiến LiDAR chưa được sử dụng rộng rãi trong lập bản đồ 

sinh khối ở quy mô lớn tại Việt Nam. Do đó, luận án này tập trung vào các nguồn dữ 

liệu miễn phí và dễ tiếp cận hơn như quang học và radar nhằm đảm bảo tính khả thi 

và ứng dụng thực tiễn. 

1.2.3.3. Phối hợp dữ liệu viễn thám thụ động và chủ động 

AGB rừng phụ thuộc vào bốn thông số: chiều cao cây, mật độ, DBH và chiều 

rộng tán cây. Tuy nhiên, việc đo DBH trực tiếp bằng cách sử dụng dữ liệu hàng không 

và vệ tinh là một thách thức. DBH là tham số có thể được sử dụng để ước tính ba 

tham số còn lại. Do đó, để tạo điều kiện cho các ước tính AGB rừng chính xác, việc 

hợp nhất dữ liệu viễn thám thụ động và chủ động đã được sử dụng. Các thông số đo 

đếm của rừng liên quan đến các nguồn dữ liệu viễn thám khác nhau được thể hiện 

trong Hình 1.3.  
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Hình 1.3. Dữ liệu ảnh viễn thám khác nhau trong ước tính AGB (Nguồn: 

Tian và cộng sự, 2023) 

Ước tính AGB rừng thông qua viễn thám quang học đa phân giải chủ yếu tập 

trung vào thông tin kết cấu ảnh được cung cấp bởi dữ liệu ảnh có độ phân giải cao 

được bổ sung cho ảnh có độ phân giải trung bình hoặc các chỉ số thực vật. Ước tính 

AGB bằng cách kết hợp thông tin kết cấu ảnh và chỉ số thực vật có độ chính xác cao 

hơn so với sử dụng từng biến đơn lẻ hoặc chỉ sử dụng các band quang phổ (Beaudoin 

và cộng sự, 2014; Ou và cộng sự, 2019). 

Sự kết hợp giữa viễn thám chủ động và thụ động để ước tính AGB rừng chủ 

yếu dựa vào dữ liệu sinh khối thu được từ các điểm lấy mẫu hiện trường hoặc LiDAR 

làm điểm chuẩn và dữ liệu viễn thám thụ động hoặc SAR làm các biến độc lập. Sự 

kết hợp giữa SAR và dữ liệu quang học bổ sung cho nhau, do đó cải thiện độ chính 

xác ước tính và giảm vấn đề bão hòa, đặc biệt với chi phí thấp trên phạm vi rộng 

(Lefsky và cộng sự, 2007; Nerem và cộng sự, 2018). 

Mặc dù viễn thám làm giảm đáng kể thời gian và chi phí ước tính AGB rừng, 

dữ liệu đo đếm hiện trường là không thể thiếu cho cả việc xây dựng mô hình và đánh 

giá kết quả ước tính AGB rừng. Ngoài ra, chi phí mua ảnh, phạm vi phủ sóng và sự 

sẵn có hạn chế của các cảm biến khác nhau, việc lựa chọn một cảm biến phù hợp với 
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tính sẵn có của dữ liệu cụ thể, ngân sách dự án và các yêu cầu kỹ năng kỹ thuật để 

phân tích dữ liệu vẫn là một thách thức thực tế. 

1.3.3. Các phương pháp ước tính AGB 

Với sự phát triển nhanh chóng của công nghệ cảm biến và xử lý dữ liệu, viễn 

thám ngày càng trở thành công cụ chủ lực trong ước tính sinh khối rừng, bổ trợ hiệu 

quả cho các phương pháp truyền thống vốn đòi hỏi nhiều công sức và chi phí. Dựa 

trên sự khác biệt về cơ sở lý thuyết và cách biểu diễn mối quan hệ giữa tín hiệu viễn 

thám và sinh khối, các phương pháp ước tính AGB thường được chia thành bốn nhóm 

chính, gồm mô hình thực nghiệm, mô hình vật lý, mô hình cơ học và các mô hình 

tích hợp. Mỗi nhóm phương pháp có cơ sở lý thuyết, yêu cầu dữ liệu và mức độ phức 

tạp khác nhau, phù hợp cho các mục tiêu và quy mô nghiên cứu khác nhau. 

1.3.3.1. Mô hình thực nghiệm 

Mô hình thực nghiệm là cách tiếp cận phổ biến nhất để ước tính AGB rừng. 

Cụ thể, một mô hình thống kê được xây dựng giữa các biến từ dữ liệu viễn thám và 

các dữ liệu ô mẫu, từ đó mô hình được sử dụng để ước tính AGB cho các vùng có 

diện tích lớn hơn (Frumkin và Haines, 2019; Lu và cộng sự, 2012; Luo và cộng sự, 

2017). Các mô hình thực nghiệm được phân loại làm mô hình tham số hoặc phi tham 

số. Các mô hình tham số chủ yếu đề cập đến hồi quy tuyến tính (LR), hồi quy đa biến 

(MR) và các phương pháp hồi quy phi tuyến tính. Theo đó, các phương trình và hàm 

tham số đóng vai trò là mô hình mô phỏng. Mặc dù các mô hình thực nghiệm rất đơn 

giản và dễ hiểu, tạo điều kiện cho việc hiểu và phân tích các phát hiện, độ chính xác 

ước tính của chúng thường không cao lắm (Li và cộng sự, 2012; Li và cộng sự, 2022; 

Sarker và Nichol, 2011).  

Mô hình MR có thể tăng cường ước tính AGB bằng cách tích hợp độ phản xạ 

bề mặt, VIs và các yếu tố sinh lý (Price và cộng sự, 2017). Ngoài ra, giữa diện tích 

tán lá với trữ lượng các-bon ở rừng nhiệt đới cũng có mối quan hệ chặt chẽ (Zhang 

và cộng sự, 2014). Mô hình biến tối ưu phụ thuộc vào khu vực nghiên cứu (Durante, 
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2019; Xu và Cao, 2006). MR giả định rằng các biến dữ liệu viễn thám ở các dải phổ 

khác nhau là không tương quan, điều này hiếm khi xảy ra trong viễn thám. Do đó, Lu 

và cộng sự (2012) đề xuất sử dụng hệ số tương quan và phân tích hồi quy từng bước 

để xác định các biến dữ liệu viễn thám có tương quan cao với sinh khối trong khi có 

tự tương quan yếu. 

Trong giai đoạn trước đây, phần lớn các nghiên cứu trong nước về ước tính 

sinh khối rừng vẫn dựa trên hồi quy tuyến tính hoặc hàm hồi quy logarit để mô hình 

hóa mối quan hệ giữa chỉ số phổ và AGB. Tuy nhiên, cùng với sự phát triển mạnh 

mẽ của học máy, xu hướng gần đây cho thấy các thuật toán phi tuyến đang ngày càng 

được áp dụng rộng rãi hơn nhằm cải thiện độ chính xác mô hình. Tổng hợp thống kê 

(Hình 1.4) cho thấy các mô hình hồi quy truyền thống vẫn được sử dụng phổ biến 

trong khoảng 10 năm trở lại đây (35 nghiên cứu). Tuy nhiên các thuật toán phi tuyến 

vẫn được nghiên cứu rộng rãi đặc biệt là các thuật toán học máy được phát triển rộng 

rãi trong những năm gần đây. 

 

Hình 1.4. Các thuật toán sử dụng trong các nghiên cứu gần đây 
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Trong bối cảnh nghiên cứu trong nước, các công trình giai đoạn 2014–2025 

cho thấy mô hình thực nghiệm, đặc biệt là hồi quy tuyến tính và các thuật toán học 

máy, vẫn là nhóm phương pháp được sử dụng phổ biến nhất trong ước tính AGB 

rừng. Các nghiên cứu tập trung chủ yếu tại các tỉnh có diện tích rừng lớn hoặc hệ sinh 

thái đặc thù như Đắk Lắk, Gia Lai, Quảng Bình, Bắc Kạn, Hòa Bình và Thừa Thiên 

Huế, với dữ liệu viễn thám chủ yếu là Landsat, Sentinel-1/2 và ALOS PALSAR. 

Trong những năm gần đây, các thuật toán học máy như Random Forest, Cubist, SVM 

và ANN được áp dụng ngày càng rộng rãi và cho thấy khả năng cải thiện rõ rệt độ 

chính xác so với các mô hình hồi quy truyền thống (Đỗ Thị Nhung và cộng sự, 2024; 

Nguyễn Thanh Tuấn và cộng sự, 2022). 

Trên phạm vi quốc tế, xu hướng chuyển dịch từ các mô hình hồi quy tuyến 

tính sang các thuật toán phi tuyến và học máy diễn ra mạnh mẽ, đặc biệt trong các hệ 

sinh thái rừng nhiệt đới và rừng hỗn loài phức tạp. Random Forest là thuật toán được 

sử dụng phổ biến nhất, tiếp theo là SVM, KNN, ANN và các mô hình học sâu, với 

nhiều nghiên cứu báo cáo hệ số xác định R² đạt từ 0,7 đến 0,95 khi kết hợp dữ liệu 

quang học, radar và LiDAR (Anadita, 2024; Jin, 2024). Tuy nhiên, việc mở rộng mô 

hình từ quy mô địa phương sang quy mô lớn vẫn chịu ảnh hưởng đáng kể của sai số 

dữ liệu thực địa và tính không đồng nhất không gian của rừng. 

Các thuật toán phi tuyến truyền thống như hàm mũ hay GAM (mô hình cộng 

tính tổng quát) cũng được sử dụng nhưng không phổ biến. Mô hình cộng tính tổng 

quát (GAM) là một mở rộng linh hoạt của GLM (mô hình tuyến tính tổng quát), trong 

đó mỗi biến dự báo được mô tả bằng một hàm trơn phi tuyến thay vì quan hệ tuyến 

tính cố định. Theo Wood (2017), các hàm trơn như spline cho phép GAM mô hình 

hóa các mối quan hệ phức tạp mà không cần xác định trước dạng hàm, nhờ vậy đặc 

biệt phù hợp với các bài toán môi trường – lâm nghiệp có quan hệ sinh thái phi tuyến 

theo không gian và thời gian. Một ưu điểm quan trọng của GAM là khả năng điều 

chỉnh mức độ trơn nhằm cân bằng giữa tính linh hoạt và khả năng khái quát hóa giúp 

hạn chế hiện tượng quá khớp hoặc quá thấp. Do đó, trong các nghiên cứu ước tính 
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sinh khối rừng – nơi mối quan hệ giữa chỉ số phổ, đặc trưng địa hình và AGB thường 

phi tuyến và không đồng nhất – việc lựa chọn GAM là hoàn toàn hợp lý. 

Các mô hình tham số được xây dựng dựa trên các giả định phân phối dữ liệu 

lý tưởng, sao cho phân phối dữ liệu tuân theo phân bố chuẩn. Tuy nhiên, sự tương tác 

giữa các biến thành phần viễn thám được sử dụng để ước tính AGB rừng rất phức tạp 

và việc phân phối dữ liệu rất khó đánh giá hoặc thiếu các đặc điểm phân biệt. Ngược 

lại, các mô hình phi tham số liên quan đến phân tích dữ liệu thống kê trực tiếp mà 

không dựa vào khái quát hóa toàn bộ phân phối mẫu.  

 Các mô hình phi tham số, thường được áp dụng trong học máy, là các mô 

hình được sử dụng nhiều nhất hiện nay trong các ước tính AGB rừng dựa trên viễn 

thám. Chủ yếu người láng giềng gần nhất (kNN), Mạng thần kinh nhân tạo (ANN), 

Hỗ trợ máy véc-tơ (SVM), và Rừng ngẫu nhiên (RF), gradient boosting (GB), và 

maximum entropy (ME)  (Fremout và cộng sự, 2022; Liang và cộng sự, 2016; Pan 

và cộng sự, 2011; Tian và cộng sự, 2022). Phương pháp RF và ME đang ngày càng 

được áp dụng phổ biến trong lĩnh vực ước tính AGB rừng (Hình 1.4).  

RF cải thiện độ chính xác dự đoán bằng cách xây dựng một "rừng" gồm nhiều 

cây quyết định phân loại thông qua một sơ đồ toàn diện, trong đó cả mẫu và biến 

được xử lý đồng thời thông qua phương pháp bootstrap và "thuật toán đóng gói" 

tương ứng (Brown và cộng sự, 2018; Liang và cộng sự, 2016). Ngoài ra, RF đạt được 

phân đoạn tối ưu tại mỗi nút bằng cách sử dụng cây phân loại và hồi quy. Mặc dù các 

cây riêng lẻ có thể yếu, sự kết hợp của tất cả các cây làm mạnh mẽ hơn các thuật toán 

khác và không bị giới hạn bởi sự xuất hiện của việc “học” quá mức (Brown và cộng 

sự, 2018).  

Xu hướng nghiên cứu trong nước sử dụng các thuật toán hiện đại cũng bắt 

đầu hình thành. Các nghiên cứu của Nguyễn Thanh Tuấn và cộng sự (2022) cho thấy 

RF là thuật toán hiệu quả nhất khi ước tính AGB rừng thường xanh tại tỉnh Bình 

Phước. Gần đây, Đặng Thị Ngọc An và cộng sự (2019), Đỗ Thị Nhung và cộng sự 

(2024) cùng một số nhóm khác đã mở rộng áp dụng các thuật toán Cubist, ANN và 
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RF, cho thấy tiềm năng lớn của học máy trong mô hình hóa mối quan hệ phi tuyến 

giữa đặc trưng phổ và sinh khối của các đối tượng rừng khác nhau.  

Với các ưu và nhược điểm của các nghiên cứu trong và ngoài nước cho thấy 

việc thử nghiệm các thuật toán khác nhau từ tuyến tính, phi tuyến tính (GAM), và 

học máy (RF) cho nghiên cứu ước tính AGB rừng là phù hợp với xu thế nghiên cứu 

hiện nay, đặc biệt là trên địa bàn tỉnh Đắk Lắk. 

1.3.3.2. Mô hình hóa vật lý 

Sinh khối có thể được ước tính bằng mô hình vật lý thông qua nội suy từ thông 

tin viễn thám bằng cách sử dụng mối quan hệ giữa các đặc điểm thực vật hai chiều 

và sinh khối. Các mô hình vật lý được sử dụng để ước tính AGB rừng chủ yếu bao 

gồm truyền bức xạ và mô hình quang hình học. Sừ dụng LiDAR và dữ liệu viễn thám 

quang học để ước tính AGB thông qua các thông số cấu trúc của rừng như độ che phủ 

thực vật, LAI và chiều cao cây cho thấy có sự cải thiện đáng kể độ chính xác trong 

ước tính AGB của rừng (Laurin và cộng sự, 2017). AGB cũng được ước tính thông 

qua dữ liệu độ che phủ của tán cây và chiều cao trung bình của tán được xác định từ 

nguồn dữ liệu phản xạ đa góc làm mô hình quang hình học (Chopping và cộng sự, 

2011). Mặc dù mô hình vật lý có ý nghĩa vật lý rõ ràng và tính ổn định cũng như khả 

năng ứng dụng tốt, việc tính toán rất phức tạp và hiện chỉ áp dụng cho các ước tính 

AGB quy mô nhỏ (Lu và cộng sự, 2012). 

Các nghiên cứu quốc tế cho thấy mô hình vật lý và quang hình học được ứng 

dụng hiệu quả trong các nghiên cứu có dữ liệu cấu trúc rừng chi tiết, đặc biệt khi kết 

hợp ảnh đa góc, LiDAR hoặc dữ liệu không gian ba chiều (Chopping và cộng sự, 

2011; Laurin và cộng sự, 2017). Tuy nhiên, tại Việt Nam, việc ứng dụng nhóm mô 

hình này còn rất hạn chế do thiếu dữ liệu LiDAR diện rộng, cũng như sự phức tạp 

trong thu thập và chuẩn hóa các tham số cấu trúc rừng. Phần lớn các nghiên cứu trong 

nước vẫn ưu tiên các mô hình thực nghiệm nhờ tính khả thi cao hơn về dữ liệu và 

nguồn lực. 
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1.3.3.3. Mô hình hóa theo thuyết cơ học 

Mô hình cơ học (hay mô hình quá trình) mô phỏng sự tăng trưởng sinh khối 

hàng năm (NPP) của rừng dựa trên các nguyên lý sinh lý và sinh thái thực vật (Yan 

và Shugart, 2005). Nhóm mô hình này mô tả các quá trình như quang hợp, thoát hơi 

nước, chuyển đổi năng lượng mặt trời thành năng lượng sinh học và trao đổi nước – 

dinh dưỡng trong cây. Các dạng mô hình phổ biến gồm mô hình dựa trên khí hậu, mô 

hình sinh lý–sinh thái (bio-physical) và mô hình hiệu quả sử dụng ánh sáng (Lu và 

cộng sự, 2014; Stovall và cộng sự, 2017). Một số mô hình sử dụng thông tin từ viễn 

thám như độ che phủ thực vật, độ ẩm đất hoặc bức xạ quang hợp hấp thụ (Popescu, 

2007). 

So với mô hình thực nghiệm, mô hình cơ học có ưu điểm là phản ánh rõ ràng 

các quá trình sinh thái và thường cho kết quả ổn định hơn. Tuy nhiên, chúng đòi hỏi 

lượng lớn tham số đầu vào khó thu thập (đất, sinh lý cây, khí tượng, bức xạ…), khiến 

khả năng ứng dụng còn hạn chế trong nhiều điều kiện nghiên cứu (Yan và Shugart, 

2005). 

Trên thế giới, các mô hình cơ học được phát triển và ứng dụng chủ yếu trong 

các nghiên cứu quy mô lớn, gắn với các chương trình giám sát sinh quyển và mô hình 

hóa chu trình các-bon toàn cầu. Tuy nhiên, ngay cả trong các nghiên cứu quốc tế, 

nhóm mô hình này vẫn gặp khó khăn khi thiếu dữ liệu sinh lý – sinh thái chi tiết và 

đồng bộ. Trong bối cảnh nghiên cứu tại Việt Nam, các hạn chế về dữ liệu khí tượng, 

sinh lý cây và đặc điểm đất đai khiến việc áp dụng mô hình cơ học cho ước tính AGB 

chưa thực sự khả thi. 

1.3.3.4. Mô hình hóa toàn diện 

Mô hình toàn diện kết hợp các nguyên lý sinh thái với dữ liệu viễn thám để 

mô phỏng động thái rừng và thay đổi sinh khối theo thời gian. Các mô hình như 

FAREAST, LANDIS/LANDIS-II, FVS hay SORTIE-ND được sử dụng để mô phỏng 

kế thừa sinh thái, tái sinh, cạnh tranh và tác động xáo trộn đến sinh khối (Yu và cộng 



29 

 

 

 

sự, 2010). Nhóm mô hình này có cấu trúc linh hoạt và cho phép mô phỏng biến động 

AGB dưới ảnh hưởng của khai thác và biến đổi khí hậu (Molotoks và cộng sự, 2018; 

Xing và cộng sự, 2014). 

Tuy nhiên, độ chính xác mô phỏng phụ thuộc mạnh vào chất lượng tham số 

sinh thái của từng loài và độ chi tiết của dữ liệu đầu vào. Khi độ phân giải ảnh viễn 

thám thấp hoặc thiếu thông tin sinh học – sinh thái, mô hình khó phản ánh đúng trạng 

thái rừng (Lu và cộng sự, 2014). Vì vậy, mặc dù có tiềm năng lớn, các mô hình toàn 

diện chưa phổ biến trong bối cảnh hạn chế dữ liệu chi tiết ở nhiều khu vực, trong đó 

có Việt Nam. 

Các mô hình toàn diện được ứng dụng rộng rãi trong các nghiên cứu quốc tế 

nhằm mô phỏng động thái rừng và biến động sinh khối dưới tác động của khai thác 

và biến đổi khí hậu (Molotoks và cộng sự, 2018; Xing và cộng sự, 2014). Tuy nhiên, 

việc triển khai các mô hình này đòi hỏi bộ dữ liệu sinh thái – sinh học chi tiết theo 

loài và theo không gian, điều hiện vẫn còn thiếu ở nhiều quốc gia đang phát triển. 

Thực tế này cũng phản ánh rõ trong các nghiên cứu tại Việt Nam, nơi mà dữ liệu đầu 

vào chưa đủ chi tiết để vận hành ổn định các mô hình toàn diện ở quy mô lớn. 

Tóm lại, mặc dù các nhóm mô hình vật lý, cơ học và mô hình toàn diện đều 

có tiềm năng mô phỏng sinh khối ở mức độ chi tiết và mang tính sinh thái cao, việc 

vận hành các mô hình này đòi hỏi tập dữ liệu lớn, tham số sinh học – sinh thái chuyên 

sâu và cấu trúc dữ liệu đầu vào phức tạp, vốn chưa đầy đủ trong bối cảnh nghiên cứu 

tại Việt Nam. Do đó, luận án tập trung vào nhóm mô hình thực nghiệm, đặc biệt là 

hồi quy và thuật toán RF, như một cách tiếp cận khả thi và phù hợp nhất với điều kiện 

dữ liệu viễn thám và thực địa hiện có, đồng thời đáp ứng mục tiêu xây dựng mô hình 

ước tính AGB và phân tích biến động sinh khối theo chuỗi thời gian. 

1.4. Thách thức và triển vọng khi sử dụng ảnh viễn thám để ước tính AGB 

Trong những thập kỷ gần đây, ước tính sinh khối rừng trên mặt đất 

(Aboveground Biomass – AGB) ở các quy mô không gian khác nhau đã có nhiều tiến 
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bộ nhờ sự phát triển nhanh chóng của dữ liệu và kỹ thuật viễn thám. Các nghiên cứu 

cho thấy AGB là một biến số then chốt để hiểu rõ chu trình các-bon toàn cầu và đánh 

giá vai trò của rừng trong bối cảnh biến đổi khí hậu (Huang và cộng sự, 2018; Xu và 

Cao, 2006). Tuy nhiên, mặc dù tiềm năng ứng dụng rất lớn, việc ước tính AGB bằng 

ảnh viễn thám vẫn đối mặt với nhiều thách thức liên quan đến dữ liệu, phương pháp 

và mô hình hóa (Muukkonen và Heiskanen, 2005). 

Một nguồn sai số quan trọng bắt nguồn từ dữ liệu viễn thám. Tín hiệu phản 

xạ phổ, các chỉ số thực vật, huỳnh quang diệp lục (SIF) hay các biến cấu trúc như 

LAI chịu ảnh hưởng mạnh của điều kiện khí quyển, độ ẩm bề mặt, góc chiếu sáng, 

suy giảm cảm biến và các sai số trong quá trình tiền xử lý ảnh (Wang và cộng sự, 

2020). Ngoài ra, sự không đồng bộ về thời gian giữa ảnh viễn thám và điều tra thực 

địa cũng làm gia tăng độ không chắc chắn trong xây dựng mô hình AGB. Đối với dữ 

liệu radar, hiện tượng bão hòa tín hiệu ở các lâm phần có sinh khối cao, ảnh hưởng 

của địa hình và sự không tương xứng giữa kích thước pixel với diện tích ô mẫu thực 

địa tiếp tục là những hạn chế phổ biến, đặc biệt ở rừng nhiệt đới có cấu trúc phức tạp. 

Bên cạnh đó dữ liệu ảnh viễn thám độ phân giải cao thường tốn kém chi phí và phạm 

vi phủ hạn chế làm giảm khả năng tiếp cận, đặc biệt là các quốc gia đang phát triển. 

Sai số từ dữ liệu thực địa cũng là một thách thức lớn. Các lỗi đo đạc đường 

kính thân cây (DBH), chiều cao cây, sai lệch trong lựa chọn phương trình sinh khối, 

cũng như sai số định vị ô mẫu so với pixel ảnh đều có thể gây sai lệch đáng kể cho 

kết quả ước tính (Koetz và cộng sự, 2007). Nhiều nghiên cứu cho thấy sai số lấy mẫu 

có thể ảnh hưởng lớn hơn cả sai số mô hình hóa (Gao và cộng sự, 2000). Bên cạnh 

đó, việc thu thập dữ liệu thực địa thường đòi hỏi nguồn lực lớn về thời gian, nhân lực 

và kinh phí, đặc biệt ở các khu vực rừng nhiệt đới rậm rạp, địa hình phức tạp hoặc 

khó tiếp cận. Số lượng ô mẫu hạn chế làm giảm khả năng đại diện cho cấu trúc và 

mức độ dị hợp không gian của rừng, từ đó ảnh hưởng trực tiếp đến độ tin cậy của các 

mô hình viễn thám (Nguyễn Thị Thanh Hương, 2022). 

Từ góc độ mô hình hóa, độ chính xác của ước tính AGB chịu tác động đồng 
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thời của sai số dữ liệu đầu vào, giả định mô hình và quá trình ước lượng tham số. Khả 

năng mô tả khoảng biến thiên AGB giữa các mô hình khác nhau là rất khác nhau, 

khiến việc lựa chọn mô hình và biến đầu vào trở thành yếu tố then chốt (Xu và Cao, 

2006). Ngoài ra, cấu trúc lâm phần nhiều tầng, sự hiện diện của thảm cây bụi và thảm 

tươi dưới tán cũng gây nhiễu tín hiệu viễn thám, đặc biệt đối với dữ liệu quang học 

và radar băng tần ngắn. 

Song song với các thách thức, triển vọng ứng dụng ảnh viễn thám trong ước 

tính AGB là rất lớn. Viễn thám là phương tiện gần như duy nhất cho phép thu thập 

dữ liệu liên tục về không gian và thời gian ở quy mô lớn, từ khu vực đến toàn cầu 

(Dillabaugh và King, 2008). Các nguồn dữ liệu quang học miễn phí như Landsat và 

Sentinel, đặc biệt là bộ dữ liệu kết hợp Harmonized Landsat–Sentinel (HLS), cho 

phép xây dựng chuỗi thời gian dày với độ phân giải không gian trung bình, tạo điều 

kiện thuận lợi cho việc theo dõi biến động AGB một cách nhất quán. Bên cạnh đó, 

dữ liệu độ phân giải cao từ UAV, ảnh vệ tinh thương mại và LiDAR hàng không có 

thể cung cấp các mẫu AGB chi tiết, phục vụ hiệu chỉnh và huấn luyện mô hình. 

Trong lĩnh vực radar, dữ liệu SAR băng tần L và P, cùng với các kỹ thuật tiên 

tiến như InSAR, PolInSAR và TomoSAR, mở ra khả năng khai thác thông tin cấu 

trúc tán rừng ba chiều, góp phần giảm ảnh hưởng của hiện tượng bão hòa và cải thiện 

độ chính xác ước tính sinh khối. Đồng thời, sự phát triển nhanh của công nghệ LiDAR 

không gian (như GEDI và ICESat-2) đã cung cấp các thông tin trực tiếp về chiều cao 

và cấu trúc rừng với độ tin cậy cao, đóng vai trò quan trọng trong xây dựng các mô 

hình AGB ở quy mô khu vực và toàn cầu. 

Xu hướng chung hiện nay là tích hợp đa nguồn dữ liệu viễn thám, kết hợp 

quang học, SAR và LiDAR cùng với dữ liệu thực địa. Cách tiếp cận này cho phép 

khai thác ưu điểm của từng loại dữ liệu, giảm thiểu hạn chế riêng lẻ và nâng cao độ 

ổn định của bản đồ AGB. Đồng thời, các phương pháp phi tham số và học máy ngày 

càng cho thấy ưu thế trong xử lý dữ liệu lớn và mô hình hóa mối quan hệ phi tuyến 

phức tạp giữa AGB và các biến viễn thám. Tuy nhiên, việc lựa chọn phương pháp 
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vẫn cần cân nhắc mục tiêu nghiên cứu, phạm vi không gian, đặc điểm hệ sinh thái 

rừng và tính sẵn có của dữ liệu để đảm bảo tính khả thi và độ tin cậy của kết quả. 

1.5. Thảo luận 

Tổng hợp và phân tích hơn 120 công trình khoa học trong và ngoài nước giai 

đoạn 2014–2025 cho thấy, ước tính sinh khối rừng và đánh giá khả năng hấp thụ CO₂ 

bằng công nghệ viễn thám và GIS là một hướng nghiên cứu phát triển nhanh, song 

tồn tại sự khác biệt rõ rệt giữa nghiên cứu quốc tế và nghiên cứu trong nước về quy 

mô không gian, mức độ tích hợp dữ liệu, phương pháp mô hình hóa và khả năng ứng 

dụng thực tiễn. 

Xét về phạm vi không gian và đối tượng nghiên cứu, các nghiên cứu quốc 

tế đã tiếp cận ở quy mô lưu vực, quốc gia đến toàn cầu, bao phủ nhiều kiểu hệ sinh 

thái rừng khác nhau và cho phép theo dõi sinh khối động theo chuỗi thời gian dài. 

Trong khi đó, phần lớn các nghiên cứu trong nước mới dừng ở quy mô địa phương 

(tỉnh, khu bảo tồn hoặc lâm phần), tập trung vào một số kiểu rừng phổ biến như rừng 

thường xanh, rừng ngập mặn và rừng trồng. Điều này phản ánh thực tế rằng Việt Nam 

vẫn đang trong giai đoạn xây dựng dữ liệu nền và kiểm chứng mô hình, chưa hình 

thành được hệ thống giám sát sinh khối liên tục và đồng bộ ở quy mô vùng hoặc quốc 

gia. 

Về nguồn dữ liệu viễn thám, xu hướng chung trên thế giới là tích hợp đa 

nguồn, kết hợp ảnh quang học, radar và LiDAR (GEDI, ICESat-2), thậm chí 

UAV/TLS, nhằm khắc phục hiện tượng bão hòa tín hiệu, mây che phủ và nâng cao 

độ chính xác ước tính AGB. Ngược lại, các nghiên cứu trong nước chủ yếu vẫn dựa 

vào ảnh quang học miễn phí như Landsat và Sentinel-2; dữ liệu radar Sentinel-1 mới 

được khai thác trong một số nghiên cứu gần đây, còn dữ liệu LiDAR chưa được sử 

dụng rộng rãi do hạn chế về chi phí và khả năng tiếp cận. Việc tích hợp dữ liệu quang 

học – radar đa thời gian vẫn còn ở mức thử nghiệm, chưa hình thành quy trình ổn 

định cho giám sát dài hạn. 
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Về phương pháp mô hình hóa, các nghiên cứu quốc tế đã chuyển mạnh sang 

các thuật toán học máy và trí tuệ nhân tạo (RF, SVM, ANN, DNN, XGBoost), cho 

phép mô tả tốt hơn mối quan hệ phi tuyến giữa tín hiệu viễn thám và sinh khối rừng, 

đồng thời nâng cao độ chính xác dự báo. Trong khi đó, tại Việt Nam, các mô hình hồi 

quy tuyến tính và lô-ga-rít vẫn được sử dụng phổ biến; dù gần đây đã xuất hiện các 

nghiên cứu áp dụng RF, Cubist, SVM hoặc ANN, nhưng quy mô mẫu còn hạn chế 

và chưa đánh giá đầy đủ hiệu quả mô hình trên chuỗi thời gian dài. 

Xét về kết quả và khả năng ứng dụng, nhiều nghiên cứu quốc tế đã xây 

dựng được bản đồ sinh khối và các-bon có độ chính xác cao (R² > 0,7–0,9), phục vụ 

hiệu quả cho REDD⁺, PFES và hệ thống MRV. Ngược lại, các nghiên cứu trong nước 

phần lớn mới tập trung vào ước tính AGB tại một thời điểm, chưa đánh giá được xu 

thế biến động dài hạn của sinh khối và khả năng hấp thụ CO₂, cũng như chưa tích hợp 

đầy đủ kết quả vào hệ thống quản lý rừng quốc gia. 

Từ tổng hợp kinh nghiệm quốc tế có thể rút ra ba xu hướng chủ đạo: (i) tích 

hợp dữ liệu viễn thám đa nguồn và đa thời gian, (ii) ứng dụng các mô hình học máy 

để xử lý mối quan hệ phi tuyến phức tạp, và (iii) giám sát động sinh khối và các-bon 

theo chuỗi thời gian phục vụ hoạch định chính sách giảm phát thải. So sánh với thực 

tiễn nghiên cứu trong nước cho thấy, Việt Nam vẫn thiếu các nghiên cứu tích hợp 

đồng thời cả ba xu hướng này, đặc biệt đối với rừng tự nhiên có cấu trúc phức tạp 

như rừng thường xanh. 

Trong bối cảnh đó, việc nghiên cứu biến động sinh khối và khả năng hấp thụ 

CO₂ của rừng thường xanh tại tỉnh Đắk Lắk thông qua tích hợp dữ liệu viễn thám đa 

nguồn, mô hình học máy và phân tích thống kê chuỗi thời gian là hướng tiếp cận phù 

hợp, mang tính kế thừa và phát triển các thành tựu nghiên cứu trong và ngoài nước. 

1.6. Khoảng trống nghiên cứu và lý do lựa chọn đề tài 

1.6.1. Khoảng trống nghiên cứu 

Tổng quan các công trình giai đoạn 2014–2025 cho thấy, mặc dù nghiên cứu 
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ước tính sinh khối rừng và khả năng hấp thụ CO₂ bằng viễn thám – GIS đã đạt được 

nhiều tiến bộ, song vẫn tồn tại những khoảng trống khoa học và kỹ thuật đáng kể 

trong bối cảnh Việt Nam. 

Thứ nhất, khoảng trống về không gian và quy mô thời gian: Các nghiên cứu 

trong nước về rừng thường xanh chủ yếu mang tính cắt ngang, tập trung vào hiện 

trạng tại một thời điểm hoặc giai đoạn ngắn, trong khi thiếu các nghiên cứu xây dựng 

chuỗi giám sát dài hạn và liên tục. Điều này hạn chế khả năng đánh giá xu thế biến 

động sinh khối và vai trò của rừng thường xanh trong cân bằng các-bon ở quy mô 

tỉnh và vùng. 

Thứ hai, khoảng trống về nguồn dữ liệu: Việc phụ thuộc chủ yếu vào ảnh 

quang học trong khi chưa khai thác đầy đủ dữ liệu ra-đa đa thời gian dẫn đến hạn chế 

trong điều kiện mây che phủ và thiếu tính liên tục dữ liệu. Sự thiếu đồng bộ giữa dữ 

liệu quá khứ và hiện tại làm giảm khả năng phân tích xu thế dài hạn của sinh khối 

rừng. 

Thứ ba, khoảng trống về phương pháp mô hình hóa: Các mô hình hồi quy 

truyền thống vẫn chiếm ưu thế, trong khi các mô hình học máy mới được áp dụng thử 

nghiệm, chưa có nghiên cứu so sánh hệ thống giữa mô hình tuyến tính, phi tuyến và 

học máy trên cùng bộ dữ liệu để lựa chọn mô hình tối ưu cho rừng thường xanh. 

Thứ tư, khoảng trống về phân tích xu thế sinh khối: Các phương pháp thống 

kê mạnh như kiểm định Mann–Kendall và Sen’s slope, vốn được sử dụng rộng rãi 

trong nghiên cứu quốc tế để phát hiện xu thế biến động AGB, hầu như chưa được áp 

dụng một cách đầy đủ trong nghiên cứu rừng thường xanh tại Việt Nam. 

1.6.2. Lý do lựa chọn đề tài 

Xuất phát từ các khoảng trống nêu trên, đề tài “Ước lượng khả năng hấp thụ 

CO2 của kiểu rừng lá rộng thường xanh trên địa bàn tỉnh Đắk Lắk dựa vào dữ liệu 

viễn thám và kỹ thuật GIS” được lựa chọn dựa trên các cơ sở sau: 

Về tính cấp thiết khoa học, Đắk Lắk là địa phương có diện tích rừng tự nhiên 
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lớn của Tây Nguyên, trong đó rừng thường xanh giữ vai trò quan trọng trong hấp thụ 

các-bon và điều hòa khí hậu. Tuy nhiên, rừng của tỉnh đang chịu áp lực suy thoái và 

chuyển đổi đất mạnh mẽ, làm biến động đáng kể sinh khối và khả năng hấp thụ CO₂. 

Trong bối cảnh Việt Nam cam kết đạt phát thải ròng bằng không vào năm 2050, việc 

định lượng và theo dõi biến động sinh khối rừng thường xanh ở quy mô tỉnh có ý 

nghĩa khoa học và thực tiễn rõ rệt. 

Về tính mới trong cách tiếp cận, đề tài xây dựng chuỗi giám sát dài hạn (2015–

2025) dựa trên tích hợp dữ liệu Sentinel-1 và Landsat 8, cho phép phân tích biến động 

sinh khối theo không gian và thời gian. Việc áp dụng mô hình học máy Random 

Forest và so sánh với các mô hình hồi quy tuyến tính – phi tuyến, kết hợp các kiểm 

định thống kê Mann–Kendall và Sen’s slope, giúp nhận diện xu thế biến động AGB 

một cách định lượng và khách quan, là hướng tiếp cận còn ít được triển khai trong 

các nghiên cứu trước tại Việt Nam. 

Về tính thực tiễn và ứng dụng, kết quả nghiên cứu cung cấp bản đồ sinh khối 

và khả năng hấp thụ CO₂ của rừng thường xanh, tạo lập cơ sở dữ liệu GIS phục vụ 

quản lý rừng cấp tỉnh, hỗ trợ các chương trình PFES, REDD⁺ và tiến trình hoàn thiện 

hệ thống MRV trong lĩnh vực lâm nghiệp. 

Về tính kế thừa và phát triển, đề tài kế thừa các kết quả nghiên cứu đã có tại 

khu vực Tây Nguyên, đồng thời phát triển theo hướng chuẩn hóa dữ liệu, tích hợp đa 

nguồn viễn thám, áp dụng mô hình học máy và phân tích xu thế dài hạn. Việc lựa 

chọn rừng thường xanh tại Đắk Lắk – đại diện cho hệ sinh thái rừng nhiệt đới Việt 

Nam – tạo tiền đề cho khả năng mở rộng và nhân rộng mô hình nghiên cứu trong 

tương lai. 

Tóm lại, đề tài hướng tới giải quyết các khoảng trống hiện hữu trong nghiên 

cứu sinh khối rừng ở Việt Nam, đồng thời đóng góp cơ sở khoa học cho quản lý rừng 

bền vững và thực hiện các cam kết giảm phát thải khí nhà kính trong bối cảnh biến 

đổi khí hậu.  
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CHƯƠNG 2. ĐỐI TƯỢNG, NỘI DUNG VÀ PHƯƠNG PHÁP 

NGHIÊN CỨU 

2.1. Đối tượng và địa điểm nghiên cứu 

2.1.1. Đối tượng nghiên cứu 

Đối tượng nghiên cứu của đề tài là kiểu rừng thường xanh (RTX) và AGB 

của kiểu rừng này. Các phân tích tập trung vào mối quan hệ giữa đặc trưng ảnh viễn 

thám và AGB, nhằm ước tính lượng CO₂ hấp thụ thông qua mô hình tích hợp dữ liệu 

viễn thám, GIS và số liệu thực địa. 

2.1.2. Địa điểm nghiên cứu 

Nghiên cứu được thực hiện tại tỉnh Đắk Lắk (Hình 2.1), thuộc khu vực Tây 

Nguyên, nơi phân bố diện tích lớn rừng thường xanh với tính đa dạng sinh học cao. 

Địa hình chủ yếu là đồi núi, độ dốc lớn, phân hóa mạnh theo vùng sinh thái; khí hậu 

nhiệt đới gió mùa, mùa khô kéo dài. Đây cũng là khu vực chịu tác động rõ rệt của suy 

thoái rừng, chuyển đổi mục đích sử dụng đất và hạn hán kéo dài, tạo điều kiện phù 

hợp để nghiên cứu biến động sinh khối – các-bon bằng công nghệ viễn thám. 

 

Hình 2.1. Vị trí khu vực nghiên cứu 
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Tỉnh Đắk Lắk nằm ở vị trí trung tâm của địa bàn Tây Nguyên, trong khoảng 

toạ độ địa lý từ 107028’57” - 108059’37” độ kinh Đông và từ 12009’45” – 13025’06” 

độ vĩ Bắc. Phía Bắc giáp tỉnh Gia Lai, phía Nam giáp tỉnh Lâm Đồng, phía Đông giáp 

tỉnh Phú Yên và tỉnh Khánh Hoà và phía Tây giáp Vương quốc Campuchia và tỉnh 

Đắk Nông.  

2.2. Nội dung nghiên cứu 

Nghiên cứu được triển khai xoay quanh bốn nhóm nội dung chính, tương ứng 

với các kết quả mà luận án cần đạt được: 

(1) Đánh giá thay đổi diện tích rừng thường xanh (RTX) tỉnh Đắk Lắk 

giai đoạn 2015–2025: 

- Thu thập và tiền xử lý dữ liệu viễn thám đa thời gian (Landsat, Sentinel). 

- Xây dựng bộ mẫu phân loại, lựa chọn chỉ số và biến giải đoán. 

- Thực hiện phân loại RTX cho các mốc thời gian. 

- Đánh giá độ chính xác phân loại và lập bản đồ phân bố RTX. 

- Phân tích biến động diện tích RTX theo không gian và thời gian giai đoạn 

2015–2025. 

(2) Phân tích mối quan hệ giữa đặc trưng ảnh viễn thám và AGB: 

- Chuẩn hóa và xử lý dữ liệu thực địa AGB. 

- Trích xuất các biến viễn thám gồm chỉ số thực vật, băng phổ, cấu trúc tán 

che, địa hình, ra-đa. 

- Phân tích tương quan, kiểm định ý nghĩa và lựa chọn tập biến đầu vào phù 

hợp cho mô hình AGB. 

- Đánh giá mức độ ảnh hưởng của từng biến đến sự thay đổi AGB. 

(3) Xây dựng mô hình ước tính AGB từ dữ liệu viễn thám: 

- Xây dựng mô hình AGB dựa trên các thuật toán Hồi quy tuyến tính, Hồi 
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quy phi tuyến tính và Random Forest (RF). 

- Đánh giá hiệu quả mô hình bằng các chỉ tiêu MAE, RMSE, R² và kiểm 

định bằng dữ liệu độc lập. 

- Lựa chọn mô hình tối ưu cho khu vực nghiên cứu. 

(4) Lập bản đồ AGB và lượng CO₂ hấp thụ, đánh giá biến động theo thời 

gian: 

- Áp dụng mô hình tối ưu để ước tính AGB cho toàn tỉnh Đắk Lắk các mốc 

thời gian. 

- Lập bản đồ phân bố AGB và CO₂ hấp thụ. 

- Phân tích biến động sinh khối – các-bon theo không gian và thời gian giai 

đoạn nghiên cứu. 

- Chuyển đổi AGB sang lượng CO₂ hấp thụ theo hệ số mặc định. 

- Đánh giá xu hướng biến động hấp thụ CO2 để hỗ trợ quản lý tài nguyên 

rừng và chính sách các-bon. 

2.3. Phương pháp nghiên cứu 

Nghiên cứu này được tiếp cận theo hướng tích hợp đa nguồn dữ liệu, kết hợp 

dữ liệu thực địa với chuỗi ảnh viễn thám quang học đa thời gian, bao gồm cả ảnh 

quang học ở mức phản xạ bề mặt (Surface Reflectance – SR) và ảnh ra-đa Sentinel 

1A để ước tính, lập bản đồ và phân tích biến động AGB, đồng thời suy tính khả năng 

hấp thụ CO₂ của rừng theo không gian và thời gian. Tiếp cận chung của nghiên cứu 

được tóm tắt trong sơ đồ Hình 2.2. 
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Hình 2.2.  Sơ đồ tiếp cận nghiên cứu 

Trên thực địa, AGB được tính từ các ô mẫu tiêu chuẩn thông qua đo đạc DBH 

và H, áp dụng phương trình allometric đã kiểm định cho điều kiện địa phương; ô mẫu 

được bố trí theo phân khối trạng thái nhằm bảo đảm tính đại diện không gian và phù 

hợp với độ phân giải ảnh. Về viễn thám, sử dụng chuỗi ảnh SR nhất quán theo mùa 

giữa các năm; từ đó trích xuất các dải phổ, địa hình (độ cao và độ dốc) và các chỉ số 

phản ánh đặc tính sinh lý–sinh thái của tán rừng gồm (NDVI, EVI, SAVI, ARVI, 

SIPI, và NDWI). Dữ liệu viễn thám được ghép đồng thời với số đo AGB (cùng năm 

để tránh lệch) để đồng nhất điều kiện phenology giữa ảnh và thực địa, thời vụ. Trước 

khi mô hình hóa, các biến độc lập được sàng lọc để loại bỏ đa cộng tuyến và giảm 

nhiễu thông tin, sau đó sàng lọc biến nhằm hạn chế đa cộng tuyến trước khi mô hình 

hóa. 

Mô hình ước tính AGB dựa trên viễn thám được xây dựng theo ba cách tiếp 

cận: i) mô hình tham số (hồi quy tuyến tính); ii) mô hình hồi quy phi tham số; và iii) 

mô hình học máy (RF). Hiệu suất của mô hình được đánh giá dựa trên các tiêu chí 
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định lượng (R², RMSE, MAE). Mô hình tối ưu được lựa chọn theo bằng chứng thực 

nghiệm, ưu tiên nguyên tắc đơn giản hóa hợp lý (parsimony) khi các mô hình đạt hiệu 

suất tương đương. Mô hình tối ưu sau đó được áp dụng để ước tính AGB cho từng 

pixel trên toàn vùng, đồng thời định lượng bất định dự báo (theo sai tiêu chuẩn/độ 

rộng khoảng dự báo đối với mô hình tham số, hoặc theo phân bố/quantile dự báo đối 

với mô hình phi tham số) nhằm làm cơ sở cho diễn giải kết quả và phát hiện thay đổi: 

một pixel/khu vực chỉ được kết luận tăng/giảm có ý nghĩa khi chênh lệch ước lượng 

vượt ngưỡng thay đổi tối thiểu (MDC) tính từ bất định của hai thời điểm. Biến động 

dài hạn của AGB tiếp tục được kiểm định bằng Mann–Kendall để xác định ý nghĩa 

thống kê của xu thế và được định lượng bằng hệ số dốc Sen (tấn/ha/năm). Kết luận 

xu thế chỉ được chấp nhận khi p<0,05, khoảng tin cậy của dốc không bao trùm 0 và 

độ dốc vượt MDC suy từ bất định ước lượng. Cuối cùng, AGB được chuyển đổi sang 

các-bon và CO₂ theo hệ số khuyến nghị của IPCC (2019), qua đó ước tính và lập bản 

đồ khả năng hấp thụ CO₂ theo không gian–thời gian, hỗ trợ quản lý rừng bền vững, 

chi trả dịch vụ môi trường rừng và hoạch định chính sách ở quy mô tỉnh và vùng. 

2.3.1. Thu thập và xử lý dữ liệu thực địa 

2.3.1.1. Thu thập dữ liệu thứ cấp 

Một số thông tin, dữ liệu thứ cấp được thu thập từ các đơn vị quản lý hành 

chính nhà nước như Sở Nông nghiệp và Môi trường, Chi cục Kiểm Lâm, các Hạt 

kiểm lâm, … Các dữ liệu này được sử dụng để đối chiếu, bổ trợ cho phân tích biến 

động rừng và chuẩn hóa bản đồ nền GIS. Các thông tin thu thập bao gồm: 

- Thông tin, số liệu diễn biến rừng trong giai đoạn nghiên cứu 

- Bản đồ diễn biến và kiểm kê rừng trong giai đoạn nghiên cứu 

- Dữ liệu GIS liên quan đến ranh giới hành chính, địa hình, … tỉnh Đắk 

Lắk. 

2.3.1.2. Thu thập dữ liệu hiện trường 

Trong nghiên cứu 2 loại dữ liệu được thu thập với các mục đích khác nhau: i) 
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dữ liệu mẫu để phân loại và đánh giá kết quả phân loại thảm phủ; ii) dữ liệu ô mẫu 

dùng để xây dựng mô hình sinh khối.  

- Dữ liệu mẫu phục vụ phân loại và kiểm định độ chính xác được bố trí ngẫu 

nhiên dựa trên nguyên tắc phân tầng theo lớp phủ rừng – không rừng, nhằm 

bảo đảm tính đại diện cho các kiểu thảm phủ trong khu vực nghiên cứu.   

- Dữ liệu ô mẫu dùng để xây dựng mô hình sinh khối được bố trí trong các 

khu vực rừng tự nhiên nhằm đảm bảo tính đại diện cho các trạng thái rừng 

thường xanh trên địa bàn tỉnh Đắk Lắk. Việc bố trí được thực hiện theo 

phương pháp phân tầng dựa trên trạng thái và cấu trúc rừng, bao gồm mức 

độ khép tán, mật độ cây, đường kính và chiều cao tầng ưu thế, cũng như 

điều kiện địa hình (độ dốc, hướng dốc, độ cao). Các tiêu chí này được nhận 

diện thông qua quan sát và đo đạc trực tiếp trên thực địa kết hợp với thông 

tin hỗ trợ từ ảnh vệ tinh, kết quả phân loại và bản đồ hiện trạng rừng gần 

nhất để xác định các khối trạng thái trước khi bố trí ô mẫu. Tuy nhiên, với 

địa hình các khu vực RTX thường khó tiếp cận do địa hình núi cao, độ dốc 

lớn và bị chia cắt trong khi đó diện tích ô mẫu lớn và nguồn lực có hạn 

nên số lượng ô mẫu bố trí trên hiện trường có giới hạn và không thể phủ 

đều trên toàn bộ diện tích RTX của tỉnh. 

Mỗi ô mẫu được thiết kế hình vuông, diện tích 900 m² (30 × 30 m), tương ứng 

với độ phân giải không gian của ảnh Landsat. Cấu trúc này cho phép đối sánh trực 

tiếp giữa dữ liệu thực địa và giá trị pixel viễn thám, góp phần giảm sai số không gian 

trong quá trình trích xuất thông tin và xây dựng mô hình ước tính sinh khối. 

Tổng cộng có 70 ô mẫu mới được bố trí tại các huyện M’Đrắk, Ea Kar, Krông 

Bông và Lắk là những khu vực có diện tích RTX điển hình và thể hiện sự biến động 

về địa hình và trạng thái rừng. Việc thu thập dữ liệu được tiến hành trong giai đoạn 

từ 2020 đến năm 2024. Ngoài ra, nghiên cứu kế thừa 47 ô mẫu từ dự án “Lập bản đồ 

phân bố thực vật quý hiếm” (2013) do nhóm nghiên cứu FREM – Trường Đại học 

Tây Nguyên thực hiện. Các ô kế thừa này đã được kiểm tra, cập nhật hiện trạng và 
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chuẩn hóa tọa độ, thời gian nhằm đồng bộ với bộ dữ liệu mới. Bản đồ vị trí các ô mẫu 

được thể hiện ở Hình 2.3. 

 

Hình 2.3. Bản đồ vị trí các ô mẫu 

Kết hợp dữ liệu mới và kế thừa, tổng số 117 ô mẫu được sử dụng trong nghiên 

cứu, phân bố trên các khu vực có RTX nhiều của tỉnh Đắk Lắk. Bộ dữ liệu này được 

bố trí đại diện về không gian, đồng thời cung cấp nguồn thông tin thực tế cho việc 

ước tính sinh khối, hiệu chỉnh và kiểm định mô hình viễn thám. Hình dạng ô mẫu 

được minh họa như ở Hình 2.4. 

 
Nguồn: Nguyễn Thị Thanh Hương, 2021 

Hình 2.4. Phương pháp lập ô mẫu đo đếm  
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Các ô mẫu được bố trí theo hướng Đông – Tây, Nam – Bắc; trong ô mẫu được 

chia thành 9 ô phụ và được đánh số thứ tự từ 1 – 9 theo đường dích-dắc từ Tây sang 

Đông và từ Bắc đến Nam. Đối với địa hình dốc, ô mẫu được cải bằng tuỳ theo độ dốc. 

Trong các ô thứ cấp xác định loài cây và đo đếm đường kính tại vị trí 1,3m (D1,3-cm), 

chiều cao (H-m) và đường kính tán (CD-m) của các cây gỗ có đường kính ngang ngực 

từ 5cm trở lên. Đường kính được đo bằng thước đo đường kính với độ chính xác đến 

0,1cm; chiều cao cây được đo bằng máy đo cây đa năng Laser và máy đo cao Sunnto 

với độ chính xác 0,1m; đường kính tán được đo theo 02 hướng Đông – Tây và Nam 

– Bắc bằng thước đo dài với độ chính xác 0,1m. 

Tính sinh khối rừng trên ô mẫu 

Việc ước tính AGB tại các ô mẫu là bước quan trọng nhằm tạo lập bộ dữ liệu 

chuẩn cho xây dựng mô hình viễn thám. Để bảo đảm tính nhất quán giữa các nguồn 

dữ liệu thực địa khác nhau theo thời gian, nghiên cứu thực hiện đồng bộ hóa dữ liệu 

thông qua việc: chuẩn hóa hệ thống đo đếm (DBH tại 1,3 m; chiều cao cây H đo bằng 

máy đo Lazer) và thống nhất công thức tính AGB cho tất cả các năm đo đếm thực địa 

nhằm tránh sai lệch do dùng nhiều phương trình khác nhau. 

Đối với lựa chọn phương trình allometric, luận án sử dụng mô hình của Bảo 

Huy và cộng sự (2016a) – phương trình đã được xây dựng trên tập dữ liệu lớn gồm 

968 cây giải tích thuộc các trạng thái rừng thường xanh ở Tây Nguyên, trong đó có 

nhiều mẫu thu thập tại tỉnh Đắk Lắk. Do đó, đây là mô hình có tính đại diện cao cho 

cấu trúc sinh thái – lâm học của rừng RTX khu vực nghiên cứu. Phương trình có 

dạng: 

 AGB = 263,9977 x (DBH2 x H)0,93645         (2.1) 

Trong đó: 

- DBH là đường kính ngang ngực (cm), 

- H là chiều cao cây (m), 

- AGB tính theo kg/cây. 
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Mô hình sử dụng hai biến dễ đo đếm và có độ ổn định cao qua các năm (DBH, 

H), phù hợp với điều kiện đo đạc tại hiện trường ở rừng tự nhiên Tây Nguyên. Bảo 

Huy và cộng sự (2016a) cũng đã chứng minh rằng phương trình này có sai số thấp 

(R² hiệu chỉnh = 0,896) và phù hợp hơn so với các mô hình allometric quốc tế khi áp 

dụng trong điều kiện sinh thái địa phương. 

Trong nghiên cứu này, phương trình (2.1) được áp dụng thống nhất cho toàn 

bộ dữ liệu thực địa các năm, nhằm đảm bảo: 

- Tính đồng bộ về phương pháp tính AGB; 

- Hạn chế sai số hệ thống giữa các năm; 

- Tăng độ tin cậy cho mô hình hóa mối quan hệ giữa AGB và dữ liệu 

viễn thám. 

Nhờ đó, bộ dữ liệu AGB đầu vào đạt tính nhất quán cao, phù hợp để tích hợp 

với dữ liệu ảnh vệ tinh đa thời gian trong các bước phân tích tiếp theo của luận án. 

Để đối chiếu, nghiên cứu cũng tham khảo mô hình toàn cầu của Chave và 

cộng sự (2014), được xây dựng trên dữ liệu rừng nhiệt đới ở nhiều khu vực 

AGB = 0,0673 × (ρ×DBH2 × H)0,976          (2.2) 

Trong đó: ρ là mật độ gỗ.  

So sánh giữa hai cách tiếp cận cho thấy, mô hình toàn cầu của Chave và cộng 

sự (2014) có ưu điểm là được kiểm chứng trên nhiều kiểu rừng nhiệt đới khác nhau, 

tuy nhiên việc yêu cầu thông tin mật độ gỗ (ρ) cho từng loài cây khiến việc áp dụng 

trong thực tế gặp nhiều hạn chế, nhất là tại các hệ sinh thái nhiệt đới có tính đa dạng 

loài rất cao và thông tin về ρ thường không đầy đủ hoặc không đồng nhất.  Ngược lại, 

mô hình của Bảo Huy và cộng sự (2016a) được xây dựng dựa trên dữ liệu thực địa 

tại Tây Nguyên, phản ánh đặc trưng sinh thái – cấu trúc của RTX khu vực nghiên 

cứu. Vì vậy, việc nghiên cứu sử dụng mô hình này giúp tăng độ tin cậy và phù hợp 

hơn cho mục tiêu ước tính AGB tại Đắk Lắk. 
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2.3.2. Dữ liệu viễn thám 

2.3.2.1. Thu thập dữ liệu ảnh viễn thám  

Dữ liệu ảnh viễn thám Landsat được thu thập cho giai đoạn 2013–2025, phục 

vụ đồng thời hai mục tiêu chính của nghiên cứu là phân loại lớp phủ rừng và ước tính 

sinh khối trên mặt đất (AGB). Toàn bộ dữ liệu được khai thác miễn phí từ nền tảng 

Google Earth Engine (GEE), cho phép truy cập trực tiếp và xử lý hiệu quả các sản 

phẩm Landsat Collection 2 do USGS cung cấp. 

Trong nghiên cứu này, dữ liệu phản xạ bề mặt (Surface Reflectance – SR) từ 

ảnh vệ tinh Landsat 8 OLI/TIRS được sử dụng cho giai đoạn 2013–2025. Các sản 

phẩm này thuộc Collection 2, đã được hiệu chỉnh hình học (orthorectified) và hiệu 

chỉnh khí quyển theo chuẩn của USGS. Đối với Landsat 8, phản xạ bề mặt được xử 

lý bằng thuật toán LaSRC (Land Surface Reflectance Code), đảm bảo tính nhất quán 

và độ tin cậy của dữ liệu đầu vào. Ảnh Landsat 8 OLI/TIRS cung cấp các dải phổ 

quan trọng cho nghiên cứu rừng, bao gồm 5 dải VNIR, 2 dải SWIR và 1 dải TIR (theo 

Earth Engine Data Catalog). 

Do đặc điểm khí hậu nhiệt đới gió mùa của khu vực nghiên cứu, hiện tượng 

mây và bóng mây xuất hiện với tần suất cao, đặc biệt trong mùa mưa, gây ảnh hưởng 

đáng kể đến quá trình phân loại và mô hình hóa sinh khối. Vì vậy, loại bỏ mây và 

bóng mây được xem là bước tiền xử lý bắt buộc. Trong GEE, các cảnh ảnh Landsat 

8 được xử lý loại bỏ mây bằng mặt nạ chất lượng (QA band) tích hợp sẵn trong sản 

phẩm SR, cho phép loại bỏ các pixel bị ảnh hưởng bởi mây, bóng mây và sương mù. 

Để xây dựng ảnh không mây đại diện cho từng năm, nghiên cứu tiến hành tổng 

hợp toàn bộ các ảnh Landsat 8 hợp lệ trong khoảng thời gian từ ngày 01/01 đến 31/12 

của từng năm trong khu vực nghiên cứu. Trên tập hợp ảnh đã được lọc mây này, giá 

trị trung vị (median) của từng pixel được tính toán để tạo ra ảnh tổ hợp theo năm 

(annual median composite). Phương pháp tổ hợp trung vị giúp hạn chế ảnh hưởng 

của các giá trị ngoại lai, giảm nhiễu do mây sót, đồng thời phản ánh ổn định đặc trưng 
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phổ trung bình của bề mặt rừng trong năm nghiên cứu. 

Sau khi tạo ảnh tổ hợp không mây, các ảnh được cắt theo ranh giới khu vực 

nghiên cứu nhằm giảm dung lượng dữ liệu và tối ưu thời gian xử lý. Toàn bộ quy 

trình tiền xử lý, từ lọc mây, tổng hợp ảnh theo năm đến cắt theo vùng nghiên cứu, 

được xây dựng và thực hiện thống nhất bằng mã lệnh trên nền tảng Google Earth 

Engine (Hình 2.5), đảm bảo tính tự động, lặp lại và nhất quán cho toàn bộ chuỗi thời 

gian nghiên cứu. 

 

Hình 2.5. Minh họa đoạn mã code thu thập ảnh trên GEE 

Dữ liệu Sentinel-1 được thu từ vệ tinh ra-đa khẩu độ tổng hợp (SAR) băng 

tần C với tần số 5,405 GHz, cung cấp sản phẩm ảnh Ground Range Detected (GRD) 

đã được xử lý và hiệu chỉnh bằng Sentinel-1 Toolbox. Bộ dữ liệu được cập nhật hằng 

ngày và bao gồm các cảnh có độ phân giải 10 m, 25 m hoặc 40 m, với các chế độ 

phân cực khác nhau (VV, HH, VV+VH, HH+HV) tùy thuộc cấu hình thu nhận. Mỗi 

cảnh còn kèm theo dải dữ liệu góc tới, được nội suy từ lưới geolocation để phục vụ 

hiệu chỉnh địa hình. Quy trình tiền xử lý ảnh Sentinel-1 bao gồm khử nhiễu nhiệt, 

hiệu chỉnh bức xạ, và hiệu chỉnh địa hình bằng SRTM-30. Sau cùng, dữ liệu được 

chuyển đổi sang giá trị phản xạ chuẩn hóa ở đơn vị decibel (dB) thông qua phép biến 

đổi lô-ga-rít (10.log10(x)), tạo cơ sở cho các phân tích viễn thám ra-đa và tích hợp 

với dữ liệu quang học trong nghiên cứu (Theo Earth Engine Data Catalog). 
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Dữ liệu địa hình: Trong nghiên cứu này, hai loại dữ liệu địa hình gồm độ cao 

(elevation) và độ dốc (slope) được sử dụng. Các dữ liệu này được trích xuất từ Mô 

hình số độ cao SRTM (Shuttle Radar Topography Mission) với độ phân giải không 

gian 30 m, do NASA phát triển, cung cấp thông tin địa hình toàn cầu đáng tin cậy cho 

các phân tích không gian và môi trường (Farr và cộng sự, 2007). Sau khi thu thập, dữ 

liệu được chuẩn hóa về cùng hệ tọa độ và độ phân giải với ảnh vệ tinh quang học và 

ra-đa nhằm đảm bảo tính đồng nhất và khả năng tích hợp trong mô hình hóa sinh khối 

rừng. 

2.3.2.2. Tiền xử lý ảnh viễn thám 

Tiền xử lý ảnh viễn thám được thực hiện nhằm đảm bảo tính đồng nhất và độ 

tin cậy của chuỗi dữ liệu phục vụ phân loại và mô hình hóa sinh khối. Nguồn ảnh 

Landsat 8 được sử dụng ở mức phản xạ bề mặt (Surface Reflectance – SR) do USGS 

cung cấp sẵn, giúp loại bỏ ảnh hưởng khí quyển và đảm bảo tính nhất quán phổ theo 

thời gian. Đối với Sentinel-1, dữ liệu quét tầm xa (Ground Range Detected-GRD) 

được hiệu chỉnh sơ cấp theo quy trình chuẩn gồm hiệu chỉnh nhiễu (thermal noise 

removal), hiệu chỉnh địa hình (terrain correction) và chuyển đổi sang hệ số tán xạ 

ngược sigma-naught, bảo đảm sự ổn định tín hiệu radar khi so sánh giữa các thời 

điểm. 

Sau khi hiệu chỉnh, các pixel bị mây và bóng mây trên ảnh Landsat được loại 

bỏ bằng cách kết hợp dải đánh giá chất lượng (QA band) với thuật toán Fmask. Các 

ảnh hợp lệ sau lọc mây được tổ hợp theo mùa sinh trưởng của rừng (mùa khô và mùa 

mưa). Ảnh đại diện mỗi mùa được tạo bằng phương pháp hợp nhất trung vị (median 

composite) nhằm giảm nhiễu thời vụ và tăng tính ổn định của phổ phản xạ. Chuỗi ảnh 

SR theo mùa sau khi tổ hợp được sử dụng làm nền tảng để tính toán các biến độc lập 

cho mô hình AGB. 

Trên cơ sở dữ liệu Landsat 8 SR đã được xử lý, nghiên cứu tính toán một loạt 

chỉ số phản ánh đặc tính quang học, sinh lý–sinh thái và tình trạng ẩm của thảm thực 

vật, bao gồm NDVI, EVI, SAVI, ARVI, SIPI, NDWI, MSI, GNDVI và tỷ số phổ SR 
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(Bảng 2.1). Các chỉ số này giúp mô tả cấu trúc – sinh lý của tán rừng theo nhiều khía 

cạnh, giảm hiện tượng bão hòa tín hiệu và hỗ trợ tăng độ chính xác của mô hình ước 

tính sinh khối. Tín hiệu tán xạ ngược VH/VV từ Sentinel-1 sau khi chuẩn hóa góp 

phần bổ sung thông tin cấu trúc tán và độ ẩm, giúp khắc phục hạn chế do mây che 

phủ của ảnh quang học. Quy trình này tạo ra bộ dữ liệu viễn thám đa nguồn, nhất 

quán và ổn định theo thời gian, phù hợp cho các bước phân loại thảm phủ rừng và 

xây dựng mô hình ước tính AGB trong khu vực nghiên cứu. Tóm tắt đặc điểm ứng 

dụng của các chỉ số và công thức tính toán được trình bày trong Bảng 2.1: 

Bảng 2.1. Các chỉ số ảnh vệ tinh Landsat 

Chỉ số Công thức Ý nghĩa chính Ứng dụng 

ARVI 

(Atmospherically 

Resistant 

Vegetation Index) 

ARVI = (NIR - (2 * 

Red) + Blue) / (NIR + 

(2 * Red) + Blue) 

Hiệu chỉnh tác động 

aerosol 

Giám sát ở vùng nhiều 

bụi, khói, ô nhiễm 

không khí 

EVI (Enhanced 

Vegetation Index) 

EVI = 2,5 * ((NIR - 

Red) / ((NIR) + (C1 * 

Red) - (C2 * Blue) + 

L)) 

Khắc phục bão hòa 

NDVI, hiệu chỉnh 

đất và khí quyển 

Phân tích rừng mưa 

nhiệt đới tán dày  

GNDVI (Green 

Normalized 

Difference 

Vegetation Index) 

GNDVI = (NIR-

Green)/ (NIR+Green) 

Nhạy với hàm lượng 

diệp lục và trạng thái 

dinh dưỡng 

Giám sát hàm lượng 

diệp lục, đánh giá tình 

trạng dinh dưỡng và 

stress 

NDVI (Normalized 

Difference 

Vegetation Index) 

NDVI = (NIR – 

RED)/ (NIR + RED) 

Phản ánh độ che phủ 

xanh, cường độ 

quang hợp 

Giám sát thảm thực 

vật tổng quát, phân 

biệt khu vực có/không 

có thảm xanh  

NDWI (Normalized 

Difference Water 

Index) 

NDWI = (Green – 

NIR)/(Green + NIR) 

Phản ánh hàm lượng 

nước trong thảm 

thực vật 

Giám sát trạng thái ẩm 

và stress do khô hạn 

MSI (Moisture 

Stress Index) 
MSI = SWIR / NIR 

Phản ánh hàm lượng 

nước của tán lá, tỷ lệ 

nghịch với độ ẩm 

Theo dõi tình trạng 

khô hạn, stress do 

thiếu nước  

SAVI (Soil 

Adjusted 

Vegetation Index) 

SAVI = ((NIR - 

Red)/(NIR + Red + 

L))*(1 + L) 

Giảm ảnh hưởng nền 

đất (L: hệ số hiệu 

chỉnh 0–1) 

Hữu ích cho rừng 

thưa, cây non, đất 

trống  

SIPI (Structure 

Insensitive Pigment 

Index) 

SIPI = (NIR - Blue) / 

(NIR - Red)  

Phản ánh tỷ lệ 

carotenoids/diệp lục, 

chỉ thị stress sinh lý 

Theo dõi sức khỏe 

thực vật, phát hiện 

bệnh hoặc suy thoái 

sinh lý  
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Chỉ số Công thức Ý nghĩa chính Ứng dụng 

SR (Simple Ratio) SR = NIR/Red 

Phản ánh năng lượng 

phản xạ cận hồng 

ngoại so với vùng 

đỏ, tỷ lệ thuận với 

sinh khối và diện tích 

lá 

Ước lượng sinh khối, 

năng suất, độ che phủ 

tán lá 

2.3.3. Phân tích thay đổi thảm phủ rừng giai đoạn 2015-2025 

2.3.3.1. Phân loại thảm phủ RTX 

Trong nghiên cứu này, việc phân loại thảm phủ sử dụng ảnh vệ tinh Landsat 

8 OLI/TIRS nhằm mục tiêu xây dựng bản đồ phân bố không gian của kiểu RTX. Quá 

trình phân loại được thực hiện thông qua ba bước chính: i) thu thập điểm mẫu giải 

đoán, ii) lựa chọn và huấn luyện các thuật toán phân loại, và iii) đánh giá kết quả phân 

loại. 

- Thu thập điểm mẫu giải đoán 

Dựa vào lớp dữ liệu diễn biến rừng và ảnh vệ tinh các năm từ nhiều nguồn 

khác nhau, chọn ngẫu nhiên 300 điểm mẫu RTX và 300 điểm cho lớp “Khác” (bao 

gồm đất trống, cây trồng, khu dân cư, mặt nước, v.v.). Việc chọn mẫu được thực hiện 

bằng phương pháp lấy mẫu ngẫu nhiên có kiểm soát (stratified random sampling) 

nhằm đảm bảo tính đại diện cho từng lớp phủ. Theo Congalton và Green (2009) thì 

số mẫu tối thiểu dùng cho giải đoán 01 lớp phủ là 30 điểm mẫu vì vậy số điểm mẫu 

lấy ngẫu nhiên này được xem như đã đảm bảo dung lượng mẫu cho phân phân loại 

lớp phủ. Sau đó tập dữ liệu mẫu được chia thành 80% dữ liệu huấn luyện và 20% dữ 

liệu kiểm định một cách ngẫu nhiên.  

Việc xác định lớp phủ rừng ở các thời điểm quá khứ được thực hiện theo 

phương pháp “lấy không gian thay thế thời gian” (space-for-time substitution). Ảnh 

vệ tinh hiện tại (Google Earth, Sentinel, Landsat) kết hợp với khảo sát thực địa được 

dùng để nhận dạng đặc trưng phổ và hình thái của RTX. Kiểu rừng này có đặc điểm 

phổ ổn định, dễ phân biệt với các lớp phủ khác, và phân loại chỉ ở cấp “kiểu rừng”, 

nên giảm sai số. Từ các vùng mẫu hiện tại, đối chiếu với ảnh và bản đồ rừng các năm 
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trước (Landsat) để suy luận lớp phủ quá khứ, qua đó xây dựng bộ dữ liệu mẫu suy 

diễn cho các năm không có điều tra, đảm bảo tính nhất quán chuỗi thời gian. Dữ liệu 

mẫu dùng để đánh giá kết quả phân loại suy diễn được kiểm tra bằng cách đối chiếu 

với ảnh vệ tinh đa thời gian (Landsat, Sentinel) và các bản đồ hiện trạng rừng hoặc 

dữ liệu kiểm kê cùng kỳ. Một số điểm mẫu được kiểm tra trực quan trên ảnh GE lịch 

sử để xác nhận xu thế lớp phủ. Việc so sánh đặc trưng phổ ổn định và logic biến động 

lớp phủ cho phép đánh giá và hiệu chỉnh tập mẫu quá khứ, đảm bảo tính nhất quán 

và hợp lý theo chuỗi thời gian. 

- Phân loại RTX bằng thuật toán Random Forest 

Thuật toán RF được lựa chọn để phân loại thảm phủ cho khu vực tỉnh Đắk 

Lắk do mang lại độ chính xác cao trong phân loại thảm phủ tại khu vực nghiên cứu 

(Nguyễn Thị Thanh Hương và Đoàn Minh Trung, 2018; Vũ Thị Phương Thảo và 

Souksakone Sengchanh, 2022; Cao Thị Hoài và Nguyễn Thị Thanh Hương, 2025; Hồ 

Đình Bảo và cộng sự, 2025). Thuật toán RF là phương pháp học máy tổ hợp dựa trên 

cây quyết định (decision trees) được huấn luyện ngẫu nhiên. Trong nghiên cứu này, 

số lượng cây (ntree) được thiết lập cho phân loại là 100. Thuật toán RF có ưu điểm 

nổi bật là giảm phương sai mô hình, chống hiện tượng quá khớp (overfitting), đồng 

thời nâng cao độ ổn định và độ chính xác dự báo so với các mô hình cây đơn lẻ. Phân 

loại được triển khai trên nền tảng GEE thông qua công cụ Classifier. 

- Đánh giá kết quả phân loại: 

Đánh giá độ chính xác của kết quả phân loại được xem là bước quan trọng 

trước khi kết quả phân loại được sử dụng cho các phân tích tiếp theo (Congalton và 

Green, 2009; Nguyễn Thị Thanh Hương, 2011). Sử dụng các chỉ tiêu đánh giá theo 

hướng dẫn của Congalton và Green (2009) như: sử dụng bảng ma trận để đánh giá độ 

chính xác dựa trên tiêu chí độ chính xác chung (Overall accuracy - OA), độ chính xác 

người sản xuất (Producer accurary - PA) và độ chính xác người sử dụng (Use 

accuracy - UA). Ngoài ra, việc đánh giá mức độ quan hệ giữa thực tế và kết quả phân 

loại còn dựa vào chỉ số Kappa. Hệ số Kappa dao động trong phạm vi từ 0 đến 1 và 
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biểu thị sự giảm theo tỷ lệ về sai số được thực hiện bằng một yếu tố phân loại hoàn 

toàn ngẫu nhiên. 

Việc đánh giá độ chính xác cho từng lớp phủ và của toàn bộ ảnh phân loại 

được thực hiện dựa trên bảng ma trận sai số theo các tiêu chí đề nghị của Congalton 

và Green (2009) như sau: 

     Độ chính xác tổng thể:  𝑂𝐴 =
𝛴ⅈ=1
𝑟 𝜒𝑖𝑖

𝑁
× 100           (2.3)                  

     Độ chính xác người sử dụng:    𝑈𝐴 =
𝑋𝑖𝑖

𝑋𝑖+
× 100             (2.4) 

     Độ chính xác người sản xuất: 𝑃𝐴 =
𝑋𝑖𝑖

𝑋+𝑖
× 100        (2.5)       

Hệ số Kappa (K): 

 𝐾 =
𝑁∑ 𝑥𝑖𝑖

𝑟
𝑖=1 −∑ (𝑥𝑖+×𝑥+𝑖)

𝑟
𝑖=1

𝑁2−∑ (𝑥𝑖+×𝑥+𝑖)
𝑟
𝑖=1

      (2.6) 

Trong đó: N là tổng số pixel lấy mẫu; r là số lớp đối tượng phân loại; xii là số 

pixel đúng trong lớp thứ i (i= 1,2,...,r); xi+ là tổng pixel lớp thứ i của mẫu (loại thực 

tế/tổng giá trị theo hàng); x+i là tổng pixel của lớp thứ i sau phân loại (loại giải 

đoán/tổng giá trị theo cột);  

Chỉ số Kappa với các mức độ phân biệt được căn cứ vào bảng giá trị mức độ 

chặt chẽ theo chỉ số Kappa (Bảng 2.2) cụ thể như sau: 

Bảng 2.2. Giá trị và mức độ chặt chẽ theo chỉ số Kappa (Nguồn: Navulur, 2007) 

TT Giá trị K Mức độ phân biệt 

1 <0,00 Thấp 

2 0,00 – 0,20 Nhẹ 

3 0,21 – 0,40 Vừa 

4 0,41 – 0,60 Tương đối chặt 

5 0,61 – 0,80 Chặt 

6 0,81 – 1,00 Rất chặt 

2.3.3.2. Phân tích thay đổi thảm phủ RTX giai đoạn 2015-2025 

Dựa trên các bản đồ lớp phủ chuẩn hóa cho các mốc 2015, 2020, 2025 (cùng 

hệ phân loại, độ phân giải và phạm vi), nghiên cứu tiến hành ghép cặp theo giai đoạn 

(2015–2020; 2020–2025) và chồng lớp (overlay) từng cặp để xác định chuyển đổi 

from → to giữa các lớp. Từ lớp chuyển đổi này, ma trận biến động (change matrix; 



52 

 

 

 

Jensen, 1995) được lập bằng cách tổng hợp diện tích và tỷ lệ của từng hướng chuyển 

đổi), qua đó tính toán biến động cho mỗi giai đoạn. Kết quả được trình bày dưới dạng 

bản đồ chuyển đổi và bảng ma trận theo giai đoạn, cung cấp số liệu định lượng và 

trực quan không gian về mức độ và hướng thay đổi thảm phủ trong toàn bộ giai đoạn 

2015–2025. 

2.3.4. Phân tích mối quan hệ giữa đặc trưng ảnh viễn thám và AGB 

Hai bộ dữ liệu được sử dụng để ước tính AGB bao gồm: (1) Dữ liệu điều tra 

thực địa về sinh khối rừng; và (2) Dữ liệu viễn thám (ảnh vệ tinh và các chỉ số phổ 

sinh học; dữ liệu địa hình). 

Trước khi phân tích mối quan hệ giữa hai nguồn dữ liệu này, cần tiến hành 

chuẩn hóa và tiền xử lý để đảm bảo dữ liệu đầu vào đáp ứng các giả định thống kê 

của mô hình dự báo. 

2.3.4.1. Chuẩn hóa dữ liệu AGB 

Bộ dữ liệu gồm 117 ô mẫu thực địa, trong đó 47 ô được kế thừa từ nghiên cứu 

năm 2013 được sử dụng để đánh giá độc lập; 70 ô thu thập mới trong giai đoạn 2020–

2024, được sử dụng để xây dựng mô hình ước lượng AGB.  

Dữ liệu AGB được tiến hành kiểm tra nhằm đảm bảo các giả định thống kê 

cho quá trình mô hình hóa. Trước hết, AGB được kiểm tra phân bố thông qua các 

thống kê mô tả (giá trị trung bình, trung vị, độ lệch chuẩn, độ lệch (Skewness), độ 

nhọn (Kurtosis) và biểu đồ histogram đồng thời kiểm tra phân phối chuẩn của dữ liệu 

AGB. Kết quả cho thấy dữ liệu AGB có xu hướng lệch phải (right skewed), điều này 

có thể ảnh hưởng bất lợi đến độ ổn định của mô hình hồi quy, vốn giả định dữ liệu có 

phân phối gần chuẩn và phương sai đồng nhất. Để khắc phục, phép biến đổi lô-ga-rít 

(logAGB = log(AGB + 1)) được áp dụng cho toàn bộ bộ dữ liệu. Nguyên lý của phép 

biến đổi này là thu nhỏ khoảng cách giữa các giá trị lớn, đồng thời làm rõ sự khác 

biệt giữa các giá trị nhỏ, từ đó giảm độ lệch phải của phân bố. Phép biến đổi lô-ga-rít 

này giúp nén khoảng cách giữa các giá trị lớn, đồng thời làm nổi bật sự khác biệt giữa 
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các giá trị nhỏ, từ đó giảm hiện tượng lệch phải và ổn định phương sai. Nhờ đó, bộ 

dữ liệu AGB sau biến đổi phù hợp hơn cho việc xây dựng mô hình hồi quy và các 

phân tích thống kê tiếp theo, đảm bảo giả định về phân phối chuẩn và tính đồng nhất 

phương sai của phần dư. 

Trong tập dữ liệu AGB, một số giá trị có mức cao bất thường nhưng vẫn nằm 

trong phạm vi hợp lý của sinh khối rừng nhiệt đới (Leys và cộng sự, 2013). Song do 

số lượng ô mẫu hạn chế, các giá trị này được giữ lại nhằm bảo đảm phản ánh đầy đủ 

phổ biến thiên thực tế của sinh khối. Ảnh hưởng của chúng được kiểm soát thông qua 

phép biến đổi lô-ga-rít và áp dụng mô hình RF, vốn ít nhạy cảm với giá trị ngoại lai 

(Breiman, 2001; Cutler và cộng sự, 2007). Cách tiếp cận này cho phép duy trì toàn 

vẹn thông tin trong khi vẫn đảm bảo tính ổn định của mô hình. 

2.3.4.2. Chuẩn hóa dữ liệu ảnh vệ tinh  

Mối quan hệ giữa AGB rừng và ảnh vệ tinh được thực hiện dựa trên phân tích 

tương quan giữa AGB rừng và các biến số của ảnh vệ tinh cùng với biến số địa hình 

(bao gồm độ dốc và độ cao. Trong đó, biến số ảnh được sử dụng bao gồm các band ảnh 

gốc và các band chỉ số. Các bước thực hiện bao gồm: 

Tọa độ trung tâm của từng ô mẫu được sử dụng để trích xuất giá trị pixel 

tương ứng từ các lớp dữ liệu viễn thám, bao gồm ảnh Landsat (band 1–7) và các chỉ 

số thực vật như NDVI, SAVI, EVI, ARVI, SIPI, NDWI…, cùng với dữ liệu ra-đa 

(VV, VH) và dữ liệu địa hình (elevation, slope) theo thời gian điều tra. Quá trình trích 

xuất được thực hiện bằng công cụ Sample Raster Value trong phần mềm QGIS, đảm 

bảo tính đồng nhất về tọa độ và độ phân giải giữa các lớp dữ liệu. Trong trường hợp 

ranh giới ô mẫu không trùng khớp hoàn toàn với lưới pixel, giá trị tại tọa độ trung 

tâm ô mẫu được sử dụng như một đại diện không gian (spatial representative value), 

theo cách tiếp cận được khuyến nghị bởi Foody (2002) và Lu & Weng (2007) nhằm 

giảm sai số do hiệu ứng trộn pixel và đảm bảo tính đại diện cho đơn vị mẫu. 

Để đảm bảo sự đồng nhất giữa các biến viễn thám có đơn vị và thang đo khác 

nhau, các giá trị băng phổ và chỉ số thực vật được chuẩn hóa về cùng khoảng [0–1] 

bằng phương pháp Min–Max Scaling (Géron, 2019). Phương pháp này giúp giảm ảnh 
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hưởng của các giá trị lớn bất thường, tăng độ ổn định cho quá trình huấn luyện mô 

hình và phù hợp với các thuật toán học máy phi tuyến như Random Forest. Việc 

chuẩn hóa được thực hiện theo biểu thức: 

𝑋scaled = 
𝑥𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
      (2.7) 

Trong đó: xi là giá trị gốc của biến, 𝑋min và Xmax  lần lượt là giá trị nhỏ nhất và 

lớn nhất của biến trong tập dữ liệu. Đây là phương pháp chuẩn hóa được khuyến nghị 

rộng rãi trong học máy, đặc biệt trong xử lý dữ liệu số có biên độ lớn (Géron, 2019). 

2.3.4.3. Phân tích tương quan và chọn biến đầu vào cho mô hình AGB 

Các giá trị phổ phản xạ ảnh và các chỉ số sinh học được kết hợp với dữ liệu 

AGB đo từ thực địa, tạo thành bộ cơ sở dữ liệu phục vụ mô hình hóa. Để hạn chế hiện 

tượng đa cộng tuyến, phân tích tương quan Pearson được áp dụng nhằm lựa chọn 

những biến có hệ số tương quan cao (|r| ≥ 0,8) trước khi đưa vào mô hình.  

Tiếp theo, phân tích thành phần chính (PCA – Principal Component Analysis) 

được áp dụng nhằm giảm chiều dữ liệu và nhận diện các biến đại diện cho từng nhóm 

nhân tố viễn thám. Phương pháp PCA giúp chuyển đổi tập biến ban đầu có tương 

quan cao sang hệ trục tọa độ mới gồm các thành phần chính không tương quan, qua 

đó tối ưu hóa khả năng giải thích phương sai của dữ liệu và hạn chế hiện tượng đa 

cộng tuyến khi đưa vào mô hình ước lượng sinh khối (Géron, 2019). Đồng thời, PCA 

cung cấp cơ sở tham chiếu để đánh giá mức độ đóng góp tương đối của các nhóm 

biến (chỉ số thực vật, băng phổ, radar, địa hình) đối với sự biến thiên của AGB, hỗ 

trợ lựa chọn tập biến đầu vào tối ưu cho mô hình dự đoán. 

Để kiểm tra và loại trừ hiện tượng đa cộng tuyến đa chiều còn lại giữa các 

biến độc lập, nghiên cứu sử dụng hệ số phóng đại phương sai (Variance Inflation 

Factor – VIF). VIF phản ánh mức độ mà phương sai của ước lượng hệ số hồi quy bị 

phóng đại do sự tương quan giữa các biến độc lập (Kutner và cộng sự, 2004). Theo 

quy tắc thông thường, giá trị VIF lớn hơn 10 được xem là dấu hiệu của đa cộng tuyến 

nghiêm trọng và cần được xem xét loại bỏ hoặc đổi biến số (Dormann và cộng sự, 

2013). Tuy nhiên, O’Brien (2007) cảnh báo rằng việc áp dụng cứng nhắc ngưỡng 

“VIF > 10” có thể dẫn đến loại bỏ những biến có ý nghĩa thực tiễn, do đó cần đánh 
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giá trong bối cảnh cụ thể của mô hình và dữ liệu. Một số nghiên cứu thực hành, đặc 

biệt trong mô hình hồi quy sinh thái và viễn thám, chấp nhận các biến có VIF dưới 

20 để đảm bảo không loại bỏ các biến có tiềm năng giải thích cao (Allison, 2012; 

Statistical Horizons, 2020). Trong trường hợp của nghiên cứu này, các biến có VIF > 

10 được loại bỏ khỏi mô hình. Cách tiếp cận này giúp cân bằng giữa việc giảm thiểu 

đa cộng tuyến và duy trì khả năng giải thích của mô hình (Kim, 2019). Các biến được 

chọn lọc sau khi phân tích được sử dụng để làm định hướng cho phân tích lập mô 

hình ước tính AGB và lượng CO2 hấp thụ của RTX trên địa bàn tỉnh Đắk Lắk. 

2.3.5. Xây dựng mô hình ước tính AGB từ dữ liệu viễn thám 

Bộ dữ liệu đã chuẩn hóa tương ứng với 70 ô mẫu thu thập mới trong giai đoạn 

2020–2024, được sử dụng để phân tích mối quan hệ giữa AGB với các nhân tố ảnh 

viễn thám. Mỗi ô mẫu đã được ghép với các biến viễn thám tương ứng theo năm, bao 

gồm dữ liệu địa hình, các kênh phổ Landsat và các chỉ số thực vật (NDVI, EVI, SAVI, 

ARVI, NDWI...). Các biến ra-đa Sentinel-1 chỉ được sử dụng cho giai đoạn 2020–

2024 do hạn chế dữ liệu trước năm 2015; do đó, hai mô hình phân tích được xây dựng 

song song: (i) mô hình có tích hợp dữ liệu Sentinel-1, và (ii) mô hình chỉ sử dụng các 

biến quang học để đảm bảo khả năng áp dụng cho chuỗi ảnh từ 2013 đến 2025. 

2.3.5.1. Xây dựng mô hình hồi quy AGB 

Để tìm ra mô hình tối ưu mô tả mối quan hệ giữa AGB và các nhân tố ảnh 

viễn thám với số mẫu nhỏ, ba hướng tiếp cận chính được thử nghiệm: (i) mô hình hồi 

quy tuyến tính (Linear Regression – LR), (ii) mô hình hồi quy phi tuyến và (iii) mô 

hình học máy - RF. Toàn bộ quy trình được thực hiện trên phần mềm RStudio, bao 

gồm các bước: chuẩn hóa dữ liệu, xây dựng mô hình và đánh giá hiệu suất mô hình. 

- Mô hình hồi quy tuyến tính 

Mô hình hồi quy tuyến tính được thực hiện ở cả hai dạng: đơn biến và đa biến. 

Mô hình hồi quy đơn biến nhằm xác định nhanh mối quan hệ riêng lẻ giữa các biến 

viễn thám và sinh khối rừng, hỗ trợ đánh giá biến có khả năng dự báo tốt nhất trong 

điều kiện dữ liệu hạn chế hoặc ứng dụng thăm dò. Ngược lại, mô hình hồi quy tuyến 

tính đa biến được xây dựng để mô tả đồng thời ảnh hưởng của nhiều biến viễn thám 
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đến sinh khối rừng, qua đó tăng khả năng giải thích biến động AGB và đánh giá hiệu 

quả kết hợp giữa dữ liệu quang học và ra-đa.  

Mối quan hệ tuyến tính giữa AGB (biến phụ thuộc) và các biến viễn thám 

(biến độc lập) được thiết lập bằng hồi quy tuyến tính từng bước (stepwise regression) 

trên phần mềm RStudio. Công thức tổng quát của mô hình có dạng (Kutner và cộng 

sự, 2004): 

𝐴𝐺𝐵 = 𝛽0+ 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑛𝑋𝑛 + 𝜀     (2.8) 

Trong đó: 

✓ 𝐴𝐺𝐵 là sinh khối trên mặt đất (biến phụ thuộc). 

✓ β0   là hằng số (intercept). 

✓ 𝛽1, 𝛽2, …, 𝛽𝑛 là các hệ số hồi quy của các biến dự đoán. 

✓ 𝑋1, 𝑋2,..., 𝑋𝑛 là các biến dự đoán trích xuất từ dữ liệu viễn thám 

(chẳng hạn như chỉ số thực vật, kênh ảnh, v.v.). 

✓ ε là sai số ngẫu nhiên. 

- Mô hình hồi quy phi tuyến đa biến  

Để mô tả tốt hơn mối quan hệ phi tuyến giữa sinh khối rừng và các biến viễn 

thám, nghiên cứu áp dụng Mô hình cộng tổng quát (Generalized Additive Model – 

GAM). Phương pháp này được xem là mở rộng của hồi quy tuyến tính tổng quát 

(GLM), trong đó mối quan hệ giữa biến phụ thuộc và các biến độc lập được mô tả 

thông qua các hàm trơn (smooth functions) thay vì các hệ số tuyến tính cố định. 

Mô hình GAM được biểu diễn tổng quát như sau: 

g(E(Y)) = β0 + s1(X1) + s2(X2) + ... + sn(Xn)   (2.9) 

Trong đó: 

- Y: biến phụ thuộc (logAGB – sinh khối trên mặt đất theo lô-ga-rít tự 

nhiên), 

- si(Xi): hàm trơn mô tả mối quan hệ phi tuyến giữa biến độc lập Xi (các 

kênh phổ hoặc chỉ số thực vật) và logAGB, 
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- g(E(Y): hàm liên kết (link function), trong nghiên cứu này sử dụng 

dạng tuyến tính đơn giản (g(y) = y). 

- β0: là hằng số 

Các hàm trơn si(⋅) được xác định thông qua cơ sở spline phạt (penalized 

regression splines), cho phép linh hoạt trong việc mô tả dạng cong của dữ liệu mà 

vẫn tránh hiện tượng quá khớp (overfitting). 

Trong nghiên cứu này, GAM được triển khai trong môi trường R (gói 

“mgcv”), với hai mô hình: 

- Mô hình GAM toàn bộ biến (gam1) – bao gồm tất cả các biến quang 

học, chỉ số phổ và ra-đa được lựa chọn từ phân tích tương quan. 

- Mô hình GAM rút gọn (gam2) – sử dụng tập biến sau khi loại bỏ đa 

cộng tuyến dựa trên kết quả PCA và VIF. 

Hiệu suất mô hình được đánh giá thông qua các chỉ tiêu: 

- R² hiệu chỉnh: thể hiện mức độ giải thích biến thiên của logAGB, 

- Deviance explained (%): tỷ lệ phương sai được giải thích, 

- p-value của các hàm trơn s(·): kiểm tra ý nghĩa thống kê của từng biến. 

Việc áp dụng GAM cho phép phát hiện và mô hình hóa linh hoạt các quan hệ 

phi tuyến giữa phản xạ phổ – chỉ số thực vật – ra-đa và sinh khối rừng, giúp tăng độ 

chính xác ước lượng so với hồi quy tuyến tính. Phương pháp này được chứng minh 

hiệu quả trong nhiều nghiên cứu gần đây về ước lượng sinh khối và các-bon rừng 

nhiệt đới (Anadita và cộng sự, 2024). 

- Thuật toán RF:  

Thuật toán hồi quy RF được sử dụng nhằm ước lượng AGB. Mô hình được 

thiết lập với các biến đầu vào bao gồm các chỉ số phổ, kênh ảnh Landsat và dữ liệu 

ra-đa. Trong quá trình huấn luyện, RF tự động tạo các tập mẫu bootstrap (~70% dữ 

liệu) cho từng cây và sử dụng phần còn lại (~30%) làm mẫu “ngoài túi” (OOB) để 
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đánh giá hiệu năng nội bộ mô hình. Tập dữ liệu được chia thành 70% cho huấn luyện 

(bagging) và 30% “ngoài túi” để kiểm định nội bộ. Trong quá trình huấn luyện, các 

siêu tham số chính của mô hình RF bao gồm số lượng cây quyết định (ntree) và số 

biến được chọn ngẫu nhiên tại mỗi lần phân chia (mtry) được hiệu chỉnh tự động 

thông qua đánh giá sai số nội bộ OOB. Giá trị tối ưu của các siêu tham số được xác 

định tại điểm mà sai số OOB đạt giá trị nhỏ nhất và độ ổn định của mô hình cao nhất. 

Mô hình được chạy thử với nhiều tổ hợp giá trị khác nhau của ntree (từ 500 đến 3000) 

và mtry (từ 3 đến 6), sau đó lựa chọn cấu hình có sai số OOB nhỏ nhất và độ ổn định 

cao nhất làm bộ tham số tối ưu.Việc lựa chọn tham số theo cách này giúp đảm bảo 

mô hình đạt hiệu năng tối ưu, tránh hiện tượng quá khớp (overfitting), đồng thời phản 

ánh khách quan mối quan hệ phi tuyến giữa sinh khối (AGB) và các đặc trưng viễn 

thám (Belgiu và Drăguţ, 2016; Carreiras và cộng sự, 2012). 

Công thức tổng quát của mô hình hồi quy phi tuyến tính có thể được biểu diễn 

như sau (Breiman, 2001): 

                       𝛾 =  
1

𝑇
∑ 𝑓𝑡(𝑋)
𝑇
𝑡=1       (2.10) 

Trong đó: 

- 𝛾 là giá trị dự đoán trung bình của mô hình RF. 

- T là số lượng cây quyết định trong mô hình RF. 

- ft(X) là giá trị dự đoán của cây quyết định thứ t dựa trên biến đầu 

vào X. 

2.3.5.2. Đánh giá độ chính xác của mô hình 

Để đánh giá độ chính xác và khả năng khái quát hóa của các mô hình ước 

lượng AGB từ dữ liệu viễn thám, nghiên cứu áp dụng hai phương pháp kiểm định 

gồm: kiểm định chéo k-fold (k-fold cross-validation) và kiểm định độc lập theo thời 

gian (temporal validation). 

- Kiểm định chéo k-fold 

Phương pháp kiểm định chéo k-fold là một kỹ thuật thống kê phổ biến trong 

học máy, cho phép đánh giá hiệu suất mô hình dự đoán trên các tập dữ liệu độc lập 
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được tạo ra từ chính tập dữ liệu ban đầu, giúp giảm sai lệch ngẫu nhiên trong quá 

trình chia tách dữ liệu và hạn chế hiện tượng quá khớp (overfitting) (Moore, 2017). 

Phương pháp này được áp dụng thống nhất cho cả ba nhóm mô hình gồm tuyến tính 

đa biến-OLS, mô hình phi tuyến tổng quát-GAM và mô hình học máy-RF. Các mô 

hình được huấn luyện và kiểm định trên cùng một cơ chế chia mẫu nhằm đảm bảo 

tính khách quan và khả năng so sánh trực tiếp giữa các thuật toán (Refaeilzadeh và 

cộng sự, 2009). 

Toàn bộ 70 ô mẫu thực địa được chia ngẫu nhiên thành các nhóm (folds) có 

kích thước tương đương, với các giá trị k được thử nghiệm lần lượt là 5 và 10. Trong 

mỗi vòng lặp, k−1 nhóm (tương đương (k−1)/k dữ liệu) được dùng để huấn luyện mô 

hình và nhóm còn lại để kiểm định. Quá trình được lặp lại k lần, bảo đảm rằng mỗi ô 

mẫu được sử dụng đúng một lần trong kiểm định. Cấu hình 5-fold, được nhiều nghiên 

cứu khuyến nghị cho bộ dữ liệu cỡ nhỏ (Zhang và cộng sự, 2021; Dong và cộng sự, 

2024), được lựa chọn làm phương án kiểm định chính trong nghiên cứu này. 

Để đánh giá hiệu suất mô hình, nghiên cứu sử dụng bộ chỉ tiêu gồm R², R² 

hiệu chỉnh, RMSE và MAE. Các chỉ tiêu này được lựa chọn vì phản ánh trực tiếp 

năng lực dự đoán của mô hình theo đơn vị thực tế (tấn/ha), dễ diễn giải và đặc biệt 

phù hợp khi so sánh các mô hình có bản chất khác nhau. Trong bối cảnh nghiên cứu 

kết hợp đồng thời mô hình tham số (OLS, GAM) với mô hình phi tham số (RF), việc 

sử dụng một hệ tiêu chí chung, không phụ thuộc vào giả định phân phối hay dạng 

hàm, là yêu cầu quan trọng để đảm bảo tính công bằng khi so sánh.  

Mặc dù tồn tại các chỉ tiêu truyền thống như AIC, BIC, Mallows’ Cp hoặc 

các chỉ số dựa trên giả định phân phối, nhưng các tiêu chí này chủ yếu áp dụng cho 

mô hình tham số và phụ thuộc vào số lượng tham số, cấu trúc hàm và giả định sai số. 

Điều này khiến những tiêu chí này không phù hợp khi đánh giá đồng thời các mô 

hình phi tham số hoặc mô hình học máy vốn không dựa trên cấu trúc hàm cố định. 

Do đó, việc sử dụng R², R² hiệu chỉnh, RMSE và MAE là phù hợp hơn trong nghiên 

cứu này vì cho phép đánh giá trực tiếp và nhất quán hiệu quả dự báo của các mô hình 

ước tính sinh khối từ dữ liệu viễn thám. 
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Các chỉ số đánh giá được tính riêng cho từng vòng lặp và giá trị trung bình 

của toàn bộ quá trình được sử dụng để phản ánh hiệu năng tổng thể của từng mô hình 

(Dong và cộng sự, 2024; Moore, 2017; Zhang và cộng sự, 2021). Mô hình có giá trị 

R² cao và sai số (MAE, RMSE) thấp hơn được xem là mô hình có hiệu suất tốt và 

được sử dụng để ước lượng sinh khối cho chuỗi thời gian 2015–2025. 

Chỉ số MAE phản ánh mức sai lệch trung bình giữa giá trị dự đoán và quan 

sát, được tính theo công thức (2.11). Vì ít nhạy cảm với giá trị ngoại lai hơn RMSE, 

MAE thường được sử dụng song song để phản ánh mức sai số trung bình thực tế của 

mô hình. Sai số trung phương RMSE được tính theo công thức (2.12), thể hiện mức 

độ phân tán của sai số xung quanh giá trị trung bình. 

  MAE = 
∑ |𝑦̂𝑖−𝑦𝑖|
𝑛
𝑖=1

𝑛
      (2.11) 

Sai số trung phương - RMSE được tính theo công thức: 

RMSE  = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2n
𝑖=1

𝑛
  (2.12)   

Trong đó:  𝑦𝑖̂ giá trị được ước lượng, yi là giá trị thực được đo tính trên ô 

mẫu độc lập tức là ô mẫu không tham gia trong quá trình ước lượng.  

   n: số ước lượng tham gia đánh giá 

Căn cứ vào kết quả đánh giá và so sánh hiệu suất, mô hình có độ chính xác 

cao nhất được lựa chọn để ước lượng và xây dựng bản đồ sinh khối cho toàn khu vực 

nghiên cứu.  

- Kiểm định độc lập theo thời gian 

Nhằm kiểm tra khả năng ổn định và khái quát của mô hình theo thời gian, tập 

dữ liệu gồm 70 ô mẫu thu thập trong giai đoạn 2020–2024 được sử dụng để xây dựng 

mô hình, trong khi 47 ô mẫu độc lập thu năm 2013 được dùng để kiểm định độ chính 

xác ước lượng. Do ảnh vệ tinh năm 2013 không có dữ liệu ra-đa, mô hình tối ưu được 

huấn luyện lại chỉ với các biến quang học và địa hình trước khi đánh giá độc lập để 

đảm bảo tính nhất quán của biến đầu vào giữa các thời kỳ. 
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2.3.6. Lập bản đồ AGB và lượng CO2 hấp thụ, đánh giá biến động AGB giai 

đoạn 2015-2025 

2.3.6.1. Áp dụng mô hình tối ưu để ước tính AGB tỉnh Đắk Lắk 

Sau khi lựa chọn được mô hình dự báo AGB tối ưu (dựa trên các chỉ tiêu 

RMSE, MAE, R²), mô hình được áp dụng cho toàn bộ không gian tỉnh Đắk Lắk bằng 

cách: 

Chuẩn bị bộ dữ liệu ảnh viễn thám đa thời gian (Landsat 8 2015–2025) đã 

được tiền xử lý (hiệu chỉnh khí quyển, lọc mây, trích xuất chỉ số phổ). 

Chuẩn hóa các biến đầu vào theo cùng cấu trúc với mô hình huấn luyện (đặc 

biệt là quy tắc chuẩn hóa Min–Max [0–1] và chuyển đổi SAR sang dB). 

Tính toán giá trị AGB cho toàn tỉnh thông qua mô hình tối ưu, theo từng mốc 

thời gian: 2015-2025. 

Phương pháp này đảm bảo tính nhất quán trong ước lượng không gian, phù 

hợp với khuyến nghị của GFOI (2020) và IPCC (2019) cho theo dõi rừng dựa trên 

ảnh vệ tinh. 

2.3.6.2. Phân tích biến động AGB tỉnh Đắk Lắk giai đoạn 2015-2025 

Chuỗi bản đồ AGB theo năm được sử dụng để phân tích sự biến đổi sinh khối 

rừng trong giai đoạn 2015–2025. Sau khi tổng hợp và tính toán các thống kê mô tả 

cho từng năm, ảnh raster AGB được xuất ra và áp dụng phương pháp phát hiện thay 

đổi để đánh giá sự biến động theo thời gian. Để nâng cao độ tinh cậy của ước lượng, 

nghiên cứu đã kết hợp bốn bước để bổ trợ nhau bao gồm: i) phân tích độ bất định 

nhằm đánh giá mức độ tin cậy của giá trị ước lượng và xác định ngưỡng thay đổi tối 

thiểu để loại bỏ biến động giả do sai số mô hình; ii) kiểm định Mann–Kendall để xác 

định xu thế tăng, giảm hay ổn định của AGB; và iii) hệ số Sen’s slope để định lượng 

mức độ biến đổi qua các năm. Cách tiếp cận này giúp diễn giải biến động sinh khối 

một cách chặt chẽ, nhất quán và ít bị ảnh hưởng bởi nhiễu của ảnh viễn thám. 

Phân tích độ bất định và ngưỡng thay đổi tối thiểu (MDC): Để đảm bảo việc 



62 

 

 

 

diễn giải biến động AGB có ý nghĩa thống kê, tiến hành phân tích độ bất định và xác 

định ngưỡng thay đổi tối thiểu (Minimum Detectable Change – MDC) tức là mức 

thay đổi nhỏ nhất của AGB giữa hai thời điểm có thể khẳng định là thực sự có sự 

khác biệt chứ không phải do sai số ngẫu nhiên. 

Ngưỡng MDC được xác định dựa trên sai số chuẩn (Standard Error – SE) của 

mô hình ước lượng theo công thức (2.13): 

MDC = 𝑧𝛼/2  ×  √𝑆𝐸𝑡1
2  + 𝑆𝐸𝑡2

2       (2.13) 

Trong đó: 

- zα/2 là giá trị tới hạn của phân phối chuẩn ứng với mức ý nghĩa (chọn 

α=0,05 ⇒ z=1,96); 

- SEt1, SEt2 là sai số chuẩn của ước lượng AGB tại hai thời điểm so sánh. 

Việc áp dụng ngưỡng MDC trong nghiên cứu này giúp loại bỏ các biến động, 

tăng độ tin cậy của kết quả phân tích và cung cấp cơ sở khoa học vững chắc khi đánh 

giá mức độ thay đổi AGB và khả năng hấp thụ CO₂ theo không gian – thời gian. 

Phân tích xu thế sử dụng kiểm định Mann-Kendall: Để đánh giá xu thế thay 

đổi của AGB theo thời gian, kiểm định Mann-Kendall (MK) đã được áp dụng (Hirsch 

và cộng sự, 1982; Kendall, 1975). Kiểm định MK là một phương pháp thống kê phi 

tham số, được sử dụng rộng rãi để phát hiện xu thế đơn điệu trong dữ liệu mà không 

yêu cầu dữ liệu tuân theo phân phối cụ thể nào. Phương pháp này đặc biệt phù hợp 

để xác định xu hướng dài hạn trong dữ liệu nghiên cứu. 

Gọi x1, x2, ..., xn là các giá trị AGB theo thời gian. Thống kê kiểm định Mann-

Kendall (S) được tính bằng phương trình sau: 

𝑆 = ∑  𝑛−1
𝑖=1 ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1
      (2.14) 

Trong đó:  

Sign (xj – xi) = {

+1, 𝑛ế𝑢 𝑥𝑗  −  𝑥𝑖  >  0

0, 𝑛ế𝑢 𝑥𝑗  −  𝑥𝑖  =  0

−1, 𝑛ế𝑢 𝑥𝑗  −  𝑥𝑖  <  0
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Phương sai của S được tính theo công thức: 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
               (2.15) 

Thống kê kiểm định Z được tính như sau: 

Z = 

{
 

 
𝑆 − 1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

0,             𝑆 =  0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
, 𝑆 <  0

       (2.16) 

Mức ý nghĩa của xu thế được xác định bằng giá trị P tương ứng với thống kê 

kiểm định Z. Ngưỡng ý nghĩa 0,05 được sử dụng để đánh giá mức độ có ý nghĩa thống 

kê của xu thế. Nếu P < 0,05, xu thế được coi là có ý nghĩa thống kê. 

Ước lượng mức độ thay đổi AGB bằng ước lượng Sen’s Slope (Sen’s Slope 

Estimator): Để định lượng cường độ thay đổi của xu thế AGB, phương pháp ước 

lượng dốc Sen’s Slope được áp dụng (Sen, 1968). Phương pháp này tính toán độ dốc 

trung vị giữa tất cả các cặp điểm dữ liệu, cung cấp ước lượng về tốc độ thay đổi theo 

thời gian. Độ dốc cho mỗi cặp điểm dữ liệu (xi, xj) được tính theo công thức: 

Qi = 
𝑥𝑗− 𝑥𝑖

𝑗−𝑖
  với i < j        (2.17) 

Trong đó: i và j là các chỉ số thời gian. Ước lượng Sen’s slope là giá trị trung 

vị của tất cả các độ dốc đã tính: 

Q = median (Q1,Q2,…, Qm)      (2.18) 

Trong đó m là số lượng độ dốc được tính. Dấu của dốc Sen’s slope biểu thị 

chiều hướng xu thế: 

Q > 0 → xu thế tăng 

Q < 0 → xu thế giảm 

Khoảng tin cậy của độ dốc được tính bằng phân phối chuẩn. Nếu kiểm định 

Mann-Kendall cho kết quả có ý nghĩa thống kê và giá trị dốc Sen’s slope dương, điều 

đó cho thấy xu thế tăng. Ngược lại, dốc Sen’s slope âm cho thấy xu thế giảm. 
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Tất cả việc xử lý dữ liệu và phân tích thống kê được thực hiện bằng phần mềm 

R với gói “trend”. Dữ liệu AGB được tổ chức theo loại hình che phủ đất và theo năm. 

Các phân tích kiểm định Mann-Kendall và ước lượng dốc Sen được thực hiện riêng 

biệt cho từng loại che phủ đất. Kết quả được diễn giải dựa trên ý nghĩa thống kê và 

mức độ của xu thế được phát hiện.  

2.3.6.3. Khả năng hấp thụ và biến động CO2 của RTX 

Khả năng hấp thụ CO₂ của rừng thường xanh được ước tính gián tiếp thông 

qua AGB đã được mô hình hóa từ dữ liệu viễn thám. Trên cơ sở bản đồ AGB cho 

từng thời điểm nghiên cứu, lượng các-bon tích lũy và lượng CO₂ hấp thụ được tính 

toán theo hệ số mặc định của IPCC (2019). Phương pháp chuyển đổi được thực hiện 

như sau: 

Các-bon = AGB×0,47      (2.19) 

CO2 = Các-bon×3,67       (2.20) 

Trong đó: 

- 0,47 là hệ số chuyển đổi sinh khối khô sang lượng các-bon theo hướng dẫn 

IPCC (2019), phù hợp cho rừng nhiệt đới trong điều kiện không có hệ số 

đặc thù địa phương. 

- 3,67 là hệ số chuyển đổi các-bon thành CO₂ (dựa trên tỷ lệ khối lượng 

phân tử CO₂/C). 

Sau khi chuyển đổi, các bản đồ phân bố CO₂ hấp thụ được thành lập cho từng 

mốc thời gian (2015-2025) nhằm phản ánh sự khác biệt theo không gian của khả năng 

tích lũy các-bon. Các bản đồ này tiếp tục được chồng xếp và phân tích biến động theo 

chuỗi thời gian nhằm: 

- Xác định các khu vực tăng hoặc giảm khả năng hấp thụ CO₂; 

- Đánh giá tốc độ biến động CO₂ giữa các giai đoạn; 

- Xác định những vùng có xu hướng suy giảm hấp thụ CO₂ do mất rừng, 
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suy thoái rừng hoặc giảm sinh trưởng; 

- Xác định các vùng có khả năng phục hồi các-bon cao, từ đó hỗ trợ lập luận 

cho quản lý rừng, chi trả dịch vụ môi trường rừng và xây dựng đường cơ 

sở các-bon trong REDD+. 

Cách tiếp cận này đảm bảo tính nhất quán giữa mô hình sinh khối, bản đồ 

AGB và đánh giá các-bon, đồng thời tuân thủ khuyến nghị của IPCC và GFOI về tích 

hợp dữ liệu viễn thám trong theo dõi các-bon rừng. 
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CHƯƠNG 3. KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN 

3.1. Đánh giá thay đổi RTX giai đoạn 2015 – 2025 

3.1.1. Phân loại ảnh xác định kiểu RTX 

Sử dụng mô hình phân loại RF để chiết tách thảm phủ RTX từ ảnh vệ tinh. 

Kết quả phân loại được đánh giá dựa vào bộ mẫu độc lập tức là điểm không tham gia 

vào quá trình huấn luyện. Kết quả được tổng hợp trong Bảng 3.1 và trực quan hóa 

thông qua ma trận nhầm lẫn (Confusion Matrix) của từng năm. Việc sử dụng tập dữ 

liệu độc lập giúp đảm bảo tính khách quan và độ tin cậy, đồng thời phản ánh năng lực 

khái quát hóa thực tế của mô hình RF khi áp dụng cho khu vực nghiên cứu. 

Bảng 3.1. Kết quả tổng hợp độ chính xác phân loại các năm (OA, Kappa, PA, 

UA) 

Năm OA 

(%) 

Kappa PA RTX 

(%) 

PA Đất 

khác (%) 

UA RTX 

(%) 

UA Đất 

khác (%) 

2015 99,16 0,983 98,08 100 100 98,53 

2020 98,90 0,977 97,44 100 100 98,11 

2025 94,92 0,897 96,15 93,94 92,59 96,88 
Chú thích: OA = Overall Accuracy (Độ chính xác tổng thể), PA = Producer’s Accuracy (Độ 

chính xác của nhà sản xuất), UA = User’s Accuracy (Độ chính xác của người sử dụng) 

Kết quả cho thấy: Lớp RTX được nhận diện rất tốt qua các năm, với PA ≥ 

96% và UA ≥ 92%, cho thấy mô hình RF phân loại chính xác lớp rừng mục tiêu. Lớp 

“Đất khác” cũng duy trì độ chính xác cao, đặc biệt năm 2020 đạt PA = 100% và UA 

= 98,11%, phản ánh khả năng mô hình phân biệt rừng và các loại đất phi rừng hiệu 

quả. 

So với các nghiên cứu trước của Hồ Đình Bảo và cộng sự (2025) phân loại 4 

loại thảm phủ tại Đắk Lắk đạt OA = 0,91, lớp rừng PA/UA = 0,95/0,92. Nguyễn Thị 

Thanh Hương và cộng sự (2020) sử dụng Sentinel-2 cũng cho kết quả tương tự, với 

lớp RTX ở Đắk Nông được nhận diện chính xác hơn các loại rừng khác. Khi tăng số 

lớp giải đoán hoặc chi tiết hóa lớp phủ, độ chính xác giảm do khả năng nhầm lẫn cao 

hơn (Ngô Đức Anh và cộng sự, 2022; Nguyễn Thị Thanh Hương & Đoàn Minh 

Trung, 2018; Mai Thị Huyền và cộng sự, 2021; Nguyễn Thị Ngọc Quyên và cộng sự, 
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2016). Ma trận nhầm lẫn phân loại được thể hiện ở Hình 3.1. 

 

Hình 3.1. Ma trận nhầm lẫn phân loại  

Độ chính xác toàn cục của nghiên cứu này cũng có sự cải thiện hơn so với  

khi sử dụng ảnh Landsat 5 và thuật toán RF để phân loại cho 4 loại thảm phủ chính 

là Rừng, đất nông nghiệp, dân cư và mặt nước trên địa bàn tỉnh Đắk Lắk của Hồ Đình 

Bảo và cộng sự (2025) khi độ chính xác tổng thể cho 4 loại thảm phủ chỉ đạt 0,91 

trong đó lớp rừng có độ chích xác của người sản xuất và người sử dụng đạt lần lượt 

là 0,95 và 0,92; lớp phủ nông nghiệp chỉ đạt lần lượt là 0,83 và 0,81. Nguyễn Thị 

Thanh Hương và cộng sự (2020) khi sử dụng ảnh vệ tinh Sentinel-2 để phân loại thảm 

phủ trên địa bàn tỉnh Đắk Nông cũng cho kết quả tương đồng khi RTX cho kết quả 

phân loại có độ chính xác cao hơn so với các loại rừng khác, đặc biệt là đối với cây 

công nghiệp. Khi tăng số lớp giải đoán, loại thảm phủ chi tiết hơn thì kết quả phân 

loại thường giảm độ chính xác do khả năng nhầm lẫn giữa các lớp cao hơn. Ngô Đức 

Anh và cộng sự (2022) đã phân loại cho 10 loại thảm phủ khác nhau ở tỉnh Lâm Đồng 

độ chính xác tổng thể chỉ đạt 0,76; hay nghiên cứu của Nguyễn Thị Thanh Hương và 

Đoàn Minh Trung (2018), Mai Thị Huyền và cộng sự (2021) cho 5 loại thảm phủ 

rừng khác nhau cũng chỉ đạt 0,90; nghiên cứu khác cho 7 loại thảm phủ khác nhau 

trên địa bàn tỉnh Đắk Lắk của Nguyễn Thị Ngọc Quyên và cộng sự (2016) cũng chỉ 

đạt độ chính xác toàn cục là 0,74. Như vậy, việc chiết tách RTX ra khỏi các loại thảm 

phủ khác đã cho độ chính xác cao và phù hợp với mục tiêu nghiên cứu là ước lượng 
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sinh khối và khả năng hấp thụ CO₂ chung cho kiểu rừng này.  

Kết quả này cho thấy việc sử dụng mô hình RF để phân loại ảnh vệ tinh đa 

phổ như Landsat là lựa chọn phù hợp cho việc lập bản đồ thảm phủ rừng RTX tại 

Đắk Lắk. Đồng thời, góp phần mở rộng cơ sở dữ liệu chuỗi thời gian dài (2015–

2025), tạo tiền đề quan trọng cho các bước phân tích biến động sinh khối và hấp thụ 

CO₂ của kiểu rừng này. 

Kết quả phân loại và thống kê diện tích RTX từ ảnh viễn thám cho thấy sự 

phân bố của kiểu rừng này tại tỉnh Đắk Lắk có sự chênh lệch rõ rệt giữa các khu vực 

địa lý (Hình 3.2). 

 

Hình 3.2. Diện tích rừng thường xanh theo huyện giai đoạn 2015-2025 

Kết quả thống kê diện tích RTX tại các huyện Ea Kar, Krông Bông, Krông 

Năng, Lắk và M’Đrắk trong giai đoạn 2015–2025 cho thấy sự biến động không đồng 

đều theo không gian và thời gian, phản ánh rõ các xu thế khác biệt về mức độ phục 

hồi và suy giảm rừng giữa các khu vực trong tỉnh. 

Trong giai đoạn 2015–2025, tổng diện tích RTX có xu hướng tăng nhẹ, chủ 

yếu nhờ các hoạt động trồng rừng và quy định đóng cửa rừng tự nhiên trong giai đoạn 

này. Tuy nhiên, mức độ biến động khác biệt đáng kể giữa các huyện, cho thấy tác 

động tổng hợp của điều kiện tự nhiên, áp lực kinh tế - xã hội và công tác quản lý rừng. 
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Về tổng thể, diện tích RTX các huyện có xu hướng tăng nhẹ, trừ huyện Krông 

Năng có xu hướng giảm. Giai đoạn 2020 – 2025 cho thấy có tốc độ gia tăng đáng kể 

diện tích rừng ở các huyện Lắk và Krông Bông. Các huyện còn lại có xu hướng giảm 

hoặc duy trì ổn định (Ea Kar) trong giai đoạn này. Kết quả này cũng tương đồng với 

các báo cáo diễn biến rừng tỉnh Đắk Lắk giai đoạn 2016-2025 cho thấy tổng diện tích 

rừng toàn tỉnh bao gồm cả RTX và các loại rừng khác có xu hướng giảm nhẹ khoảng 

gần 10.000ha. 

Phân bố diện tích rừng theo không gian cho thấy RTX của tỉnh tập trung phân 

bố chủ yếu ở phía Đông – Nam gồm các huyện Krông Bông, Lắk, M’Đrắk, Ea Kar – 

nơi địa hình dốc, ít tác động sản xuất và là vùng lõi của các Vườn quốc gia Chư Yang 

Sin và các khu bảo tồn thiên nhiên Nam Ka và Ea Sô (Hình 3.3). 

 
2015 

 
2020 

 
2025 

Hình 3.3. Phân bố thảm phủ RTX tỉnh Đắk Lắk giai đoạn 2015 - 2025 
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Nhìn chung, kết quả phân tích cho thấy rừng RTX tại Đắk Lắk phân bố không 

đồng đều, tập trung mạnh ở vùng đồi núi phía Đông và Nam, nơi điều kiện tự nhiên 

thuận lợi và mức độ bảo vệ cao hơn. Các khu vực trung tâm và phía Bắc có độ che 

phủ thấp hơn, chủ yếu là rừng nghèo hoặc rừng phục hồi. Sự khác biệt này phản ánh 

mối liên hệ chặt chẽ giữa yếu tố địa hình, khí hậu, mức độ bảo vệ rừng và áp lực sử 

dụng đất, đồng thời khẳng định vai trò đặc biệt của các huyện Krông Bông, Lắk và 

M’Đrắk trong việc duy trì quỹ rừng RTX có mức đa dạng sinh học cao của tỉnh. 

Rừng thường xanh có cấu trúc sinh thái phức tạp với nhiều tầng cây gỗ, độ 

che phủ lớn và mức độ đa dạng loài cao. Các đặc điểm này giúp duy trì chỉ số thực 

vật (NDVI, EVI) ổn định quanh năm, tạo nên tín hiệu quang phổ đặc trưng và khác 

biệt rõ rệt so với các lớp “Khác” như nương rẫy, đất trống hay cây công nghiệp. Điều 

này lý giải tại sao mô hình RF đạt hiệu quả cao khi nhận dạng lớp RTX. Phát hiện 

này cũng tương đồng với nghiên cứu của Nguyễn Thị Thanh Hương và Đoàn Minh 

Trung (2018), Mallinis và cộng sự (2020), Nguyễn Thị Thanh Hương và cộng sự 

(2020), trong đó RF cho kết quả phân loại thảm phủ có độ chính xác cao hơn so với 

các thuật toán phân loại khác như kNN (k-nearest neighbor) hay Maximum 

likelihood,… đặc biệt là đối với lớp phủ là RTX. 

3.1.2. Phân tích thay đổi diện tích RTX giai đoạn 2015 – 2025 

Sử dụng các bản đồ phân loại RTX các năm 2015, 2020 và 2025 để phân tích 

xu hướng thay đổi RTX trên địa bàn tỉnh giai đoạn 2015 – 2025. Kết quả cho thấy xu 

hướng ổn định và tăng nhẹ ở một số địa phương trong 10 năm qua ( 

 

Hình 3.4). Phân tích này cung cấp cơ sở tin cậy để phân tích AGB và khả 

năng hấp thụ CO₂ trong nghiên cứu tiếp theo.
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Hình 3.4. Bản đồ thay đổi diện tích rừng thường xanh 
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Kết quả đánh giá thay đổi diện tích RTX ở các huyện (địa giới hành chính cũ) 

có diện tích rừng thường xanh lớn trong tỉnh là Lắk, Krông Bông, M’Đrắk, Ea Kar 

và Krông Năng cho thấy:  

- Phần lớn các huyện có diện tích RTX ổn định trong giai đoạn nghiên cứu, 

một phần do quy định đóng cửa rừng tự nhiên giai đoạn này và kết quả 

quản lý bảo vệ rừng của các chủ rừng lớn. Đặc biệt là các vườn quốc gia, 

khu bảo tồn và rừng phòng hộ có diện tích RTX lớn như Chư Yang Sin, 

Nam Ka, Núi Vọng Phu, Lắk cũng như một số công ty Lâm nghiệp. 

- Diện tích tăng rừng thường xanh rải rác và chủ yếu là các khu vực phục 

hồi xung quanh các rừng đặc dụng đặc biệt là các huyện Lắk và Krông 

Bông. 

- Khu vực giảm RTX nhiều nằm trên địa bàn huyện Krông Năng, địa phương 

có diện tích cây công nghiệp lớn nhất trong số 5 huyện phân tích. 

Nhìn chung, diện tích rừng thường xanh tại khu vực nghiên cứu ổn định và 

có xu hướng phục hồi nhẹ, phản ánh tác động tích cực của các chính sách quản lý và 

phục hồi rừng. 

Phân tích theo từng huyện có diện tích rừng thường xanh lớn trong tỉnh cũng 

có sự khác biệt đáng kể về mức độ thay đổi ở các địa phương khác nhau (Hình 3.5). 

 

Hình 3.5. Thay đổi diện tích RTX của các huyện giai đoạn 2015-2025 
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Hầu hết các huyện có xu hướng tăng diện tích rừng thường xanh đặc biệt là 

các huyện Krông Bông và Lắk có mức tăng mạnh nhất, đây cũng là 2 địa phương có 

diện tích rừng phòng hộ và đặc dụng cao của tỉnh Đắk Lắk. 

Huyện Ea Kar và M’đrắk cũng có xu hướng tăng nhưng mức độ tăng không 

nhiều. Ngược lại, diện tích RTX trên địa bàn huyện Krông Năng có xu hướng giảm 

mạnh so với tổng diện tích rừng trên địa bàn huyện. Chi tiết diện tích RTX các giai 

đoạn thể hiện ở Bảng 3.2. 

Bảng 3.2. Diện tích RTX các huyện giai đoạn 2015-2025 

Tên huyện 2015 2020 2025 Thay đổi 

Ea Kar 25.710,93 31.597,11 32.251,23 6.540.30 

Krông Bông 67.096,26 65.923,47 73.302,30 6.206.04 

Krông Năng 12.586,14 13.131,36 7.422,75 -5.163.39 

Lắk 69.132,51 68.334,48 84.551,49 15.418.98 

M'đrắk 52.642,62 61.261,56 56.794,14 4.151.52 

Tổng 227.168,46 240.247,98 254.321,91 27.153,45 

Nhìn chung, trong giai đoạn này tổng diện tích rừng thường xanh trên địa bàn 

tỉnh có biến động nhưng không nhiều, xu thế mất rừng chậm lại và xu thế phục hồi 

nhờ vào công tác phục hồi rừng và quản lý bảo vệ rừng tốt hơn đặc biệt là tại các khu 

rừng đặc dụng trên địa bàn tỉnh. 

3.2. Phân tích mối quan hệ giữa đặc trưng ảnh viễn thám và AGB 

3.2.1. Chuẩn hóa dữ liệu sinh khối ô mẫu 

Biểu đồ Hình 3.6 thể hiện phân bố giá trị AGB (đơn vị: tấn/ha) của các ô mẫu 

điều tra trong giai đoạn 2013 – 2024. Dữ liệu được thu thập tại các thời điểm khảo 

sát thực địa khác nhau, bao gồm năm 2013, 2020, 2021, 2022, 2023 và 2024.  

- Năm 2013 có số lượng ô mẫu nhiều nhất, với AGB trung bình dao động rộng 

từ khoảng 5 tấn/ha đến trên 500 tấn/ha, trong đó phần lớn tập trung trong 

khoảng 100 – 300 tấn/ha. 

- Năm 2020 có phạm vi biến động AGB hẹp hơn, chủ yếu trong khoảng 50 – 

200 tấn/ha, chỉ một số ít ô mẫu đạt trên 300 tấn/ha. 
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- Giai đoạn 2021 – 2022 có nhiều ô mẫu với AGB thấp (<50 tấn/ha), phản ánh 

đặc trưng của rừng phục hồi hoặc các lâm phần nghèo kiệt. 

- Năm 2023 – 2024 có một số ô mẫu có AGB rất cao (>600 tấn/ha). 

Phân bố tổng thể cho thấy các giá trị AGB trong toàn bộ giai đoạn nghiên cứu 

chủ yếu nằm trong khoảng 100–250 tấn/ha, với một số ít điểm có giá trị cao hoặc thấp 

hơn đáng kể. Các kết quả này phản ánh đặc trưng phân bố sinh khối của các ô mẫu 

đo đạc trong từng thời điểm khảo sát, qua đó cũng phản ánh sự đa dạng về trạng thái 

rừng, tuổi rừng và điều kiện sinh thái tại khu vực nghiên cứu. 

 

Hình 3.6. Phân bố giá trị AGB của ô mẫu theo năm 

Kết quả thống kê mô tả (Bảng 3.3) cho thấy: giá trị trung bình AGB đạt 159,81 

tấn/ha, độ lệch chuẩn 117,28 tấn/ha, phản ánh mức biến động lớn giữa các ô mẫu mẫu 

do sự khác biệt về trạng thái rừng, độ tán che và cấu trúc lâm phần trong khu vực 

nghiên cứu. Hệ số lệch (Skewness = 1,43) và độ nhọn (Kurtosis = 2,93) cho thấy phân 

bố dữ liệu lệch phải rõ rệt, tồn tại một số giá trị ngoại lai cao. Giá trị trung bình 159,8 

tấn/ha nằm trong khoảng điển hình của các hệ sinh thái rừng nhiệt đới ẩm, tương tự 

các kết quả đã được công bố ở Tây Nguyên (Phạm Tuấn Anh và Bảo Huy, 2016); 

Bình Phước (Nguyễn Thanh Tuấn và cộng sự, 2022); Bắc Kạn (Đỗ Thị Nhung và 

cộng sự, 2024). 
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Bảng 3.3. Thống kê mô tả dữ liệu AGB 

Chỉ số thống kê Giá trị 

Trung bình Mean 159,8054 

Sai tiêu chuẩn (Standard Error) 10,98392 

Trung vị (Median) 140,955 

Mode 191 

Độ lệch chuẩn (SD) 117,2761 

Phương sai mẫu (Sample Variance) 13753,69 

Độ nhọn (Kurtosis) 2,926741 

Độ lệch (Skewness) 1,425821 

Khoảng biến thiên (Range) 643,72 

Giá trị nhỏ nhất (Min) 1,07 

Giá trị lớn nhất (Max) 644,79 

Số mẫu (n) 117 

Mức tin cậy 95% 21,76112 

Biểu đồ histogram (Hình 3.7) cho thấy phân bố AGB gốc không tuân theo 

dạng chuẩn, phần đuôi kéo dài về phía giá trị cao, đặc biệt có một số điểm >400 

tấn/ha. Điều này có thể ảnh hưởng đến độ ổn định của các mô hình hồi quy tuyến 

tính. 

 

Hình 3.7. Biểu đồ phân bố AGB ô mẫu (dữ liệu gốc) 
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Để khắc phục hạn chế trên, phép biến đổi lô-ga-rít được áp dụng cho dữ liệu 

AGB. Phân bố logAGB (Hình 3.8) cho thấy phần lớn các ô mẫu tập trung trong 

khoảng log(AGB) từ 4,43 đến 5,17, tương ứng với 83,9 – 175,9 tấn/ha. Việc lô-ga-rít 

hóa làm giảm biến động dữ liệu và cải thiện sự phù hợp với các giả định thống kê 

trong mô hình hồi quy. 

 

Hình 3.8. Biểu đồ phân bố AGB ô mẫu sau biến đổi lô-ga-rít 

Phép biến đổi lô-ga-rít được áp dụng để khắc phục hiện tượng lệch phải và ổn 

định phương sai, điều này phù hợp với khuyến nghị của nhiều nghiên cứu mô hình hóa 

sinh khối rừng bằng hồi quy tuyến tính (Bảo Huy, 2012; Istrefi và cộng sự, 2019; 

Mendez-González và cộng sự, 2012; Stas, 2011). Việc lô-ga-rít hóa giúp dữ liệu trở nên 

gần phân phối chuẩn hơn, từ đó đảm bảo các giả định thống kê cơ bản trong phân tích 

hồi quy được đáp ứng. 

Trong quá trình xây dựng mô hình, logAGB được sử dụng làm biến phụ thuộc. 

Sau khi dự đoán, kết quả được chuyển ngược về đơn vị gốc (tấn/ha) bằng hàm mũ. 

Tóm lại, phân tích phân bố cho thấy: 

- Dữ liệu AGB gốc biến động lớn và lệch phải mạnh. 
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- Biến đổi log giúp giảm ảnh hưởng của ngoại lai, cải thiện tính đối xứng 

và sự ổn định phương sai. 

- Bộ dữ liệu sau biến đổi log phù hợp hơn để áp dụng các mô hình ước 

lượng sinh khối từ dữ liệu viễn thám. 

3.2.2. Phân tích tương quan Pearson 

Ma trận tương quan Pearson (Hình 3.9) phản ánh mối quan hệ giữa sinh khối 

rừng đã lô-ga-rít hóa (logAGB) và các biến độc lập bao gồm nhóm chỉ số thực vật, 

chỉ số độ ẩm, các băng phổ Landsat, yếu tố địa hình (độ cao – elevation, độ dốc – 

slope) và dữ liệu ra-đa Sentinel 1A (VV, VH). 

 

Hình 3.9. Ma trận tương quan giữa các biến viễn thám và logAGB 

Nhìn chung, các biến quang học và chỉ số phổ thể hiện mối tương quan mạnh 

với nhau, trong khi các biến ra-đa và địa hình có mối tương quan thấp đến trung bình. 

Giá trị hệ số tương quan (r) dao động trong khoảng từ –0,94 đến +1,00, phản ánh sự 

tồn tại của hiện tượng đa cộng tuyến đáng kể, đặc biệt trong nhóm các chỉ số thực vật 

và các kênh phổ Landsat. 
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Mối quan hệ giữa logAGB và các biến độc lập thể hiện sự khác biệt rõ rệt 

giữa các nhóm nhân tố (Bảng 3.4). Trong nhóm biến địa hình, elevation có mối tương 

quan dương rõ rệt với logAGB (r = 0,66), phản ánh xu thế sinh khối tăng theo độ cao, 

đặc biệt ở các khu vực rừng tự nhiên lâu năm có độ che phủ lớn. Ngược lại, slope có 

tương quan rất yếu (r = 0,10), cho thấy độ dốc không phải là yếu tố chi phối đáng kể 

sự biến động sinh khối ở quy mô toàn tỉnh. 

Đối với dữ liệu quang học Landsat, các băng phổ B3 (Green), B4 (Red), B5 

(NIR) và B6 (SWIR1) thể hiện mối tương quan âm khá mạnh với logAGB (r từ -0,26 

đến -0,55). Trong đó, B3 và B6 có hệ số tương quan âm lớn nhất (r = -0,55), phản ánh 

sự nghịch biến giữa cường độ phản xạ phổ vùng đỏ – hồng ngoại sóng ngắn và mật 

độ tán rừng: khi sinh khối tăng, tán rừng hấp thụ nhiều năng lượng hơn, làm giảm 

phản xạ phổ ghi nhận trên ảnh vệ tinh. 

Nhóm chỉ số thực vật gồm NDVI, SAVI, GNDVI và SR có mối tương quan 

dương chặt chẽ giữa chúng (r > 0,85), phản ánh tính trùng lặp cao về thông tin quang 

phổ. Tuy nhiên, mối tương quan của các chỉ số này với logAGB chỉ ở mức yếu đến 

trung bình (r = 0,24 - 0,33), cho thấy hiện tượng bão hòa phổ (spectral saturation) tại 

các vùng rừng có sinh khối cao, khi giá trị chỉ số không còn tăng tỷ lệ thuận với mật 

độ tán rừng. 

Ngược lại, các chỉ số độ ẩm như NDWI và MSI thể hiện tương quan âm đáng 

kể với logAGB (r = -0,32 và -0,45), phản ánh rằng các khu vực có độ ẩm cao thường 

không tương ứng với sinh khối lớn, do ảnh hưởng của đất trống hoặc thảm thực vật 

thấp tầng. 

Đối với dữ liệu ra-đa Sentinel-1, hai kênh VH và VV có tương quan rất yếu 

với logAGB (r = -0,12 và -0,15). Điều này cho thấy tín hiệu tán xạ ra-đa bị bão hòa 

ở rừng dày, khiến khả năng phản ánh biến động sinh khối bị giới hạn trong vùng giá 

trị cao. 
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Bảng 3.4. Phân loại nhóm biến theo mối tương quan với logAGB 

Nhóm biến Biến đại diện 
Hệ số tương 

quan (r) 
Đặc điểm nổi bật 

Địa hình Elevation, Slope 0,66; 0,10 
Elevation có tương quan dương 

mạnh; slope không đáng kể 

Chỉ số thực 

vật 

NDVI, SAVI, 

GNDVI, SR, ARVI 
0,24 – 0,33 

Tương quan dương yếu – trung 

bình; có hiện tượng bão hòa ở vùng 

rừng dày 

Chỉ số độ 

ẩm 
NDWI, MSI –0,32; –0,45 

Tương quan âm vừa; phản ánh ảnh 

hưởng độ ẩm tán và đất 

Băng phổ 

Landsat 
B3, B4, B5, B6, B7 –0,26 : – 0,55 

Quan hệ nghịch mạnh; B3 và B6 

nhạy với biến động sinh khối 

Ra-đa 

Sentinel-1 
VH, VV –0,12; –0.15 

Tương quan rất yếu; tín hiệu bị bão 

hòa ở vùng rừng dày 

Địa hình 

tổng hợp 
Elevation, Slope 0,32; 0,10 

Ảnh hưởng tích cực đến sinh khối 

do phân bố rừng theo độ cao 

Để làm rõ hơn mối tương quan giữa sinh khối rừng và các biến ảnh, biểu đồ 

so sánh hệ số tương quan giữa AGB và logAGB (Hình 3.10) cho thấy xu thế biến động 

tương đồng, tuy nhiên hệ số r của logAGB có độ lớn và tính ổn định cao hơn, phản 

ánh mối quan hệ tuyến tính được cải thiện sau khi biến đổi lô-ga-rít dữ liệu sinh khối. 

 

Hình 3.10. So sánh tương quan AGB và loAGB với các nhân tố ảnh 
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Việc biến đổi lô-ga-rít không chỉ giúp tăng cường mức độ tương quan với các 

biến quang học và chỉ số phổ (đặc biệt là NDVI, GNDVI, SR, ARVI), mà còn làm nổi 

bật hơn mối quan hệ nghịch với các băng phổ vùng SWIR (B6, B7). Kết quả này cho 

thấy việc sử dụng logAGB giúp nâng cao độ tin cậy và tính ổn định của mô hình ước 

lượng sinh khối từ dữ liệu viễn thám. 

Các phát hiện này phù hợp với nhiều nghiên cứu trước đây, Morel và cộng sự 

(2012) và Singh và cộng sự (2014) đã chỉ ra rằng các chỉ số thực vật như NDVI và EVI 

thường bị bão hòa ở vùng rừng có độ che phủ cao, dẫn đến mối tương quan yếu với 

AGB. Tương tự, Lu và cộng sự (2012) và Næsset và cộng sự (2013) nhận thấy việc áp 

dụng log-transform giúp cải thiện độ phù hợp của các mô hình hồi quy tuyến tính khi 

ước lượng sinh khối rừng. 

Đối với dữ liệu ra-đa, hệ số tương quan thấp của VH và VV phù hợp với kết 

quả nghiên cứu của Omar và cộng sự (2017) tại rừng mưa Malaysia, nơi tín hiệu tán 

xạ C-band bị giới hạn trong vùng sinh khối cao. Tuy nhiên, các nghiên cứu gần đây 

(David và cộng sự, 2022; Nguyễn Văn Thị và cộng sự, 2018; Wai và cộng sự, 2022; 

Ye và cộng sự, 2023) đều cho rằng việc kết hợp dữ liệu ra-đa và quang học có thể cải 

thiện đáng kể độ chính xác của mô hình ước lượng sinh khối. 

Tổng hợp lại, phân tích tương quan Pearson cho thấy dữ liệu AGB gốc có mối 

quan hệ yếu với các chỉ số viễn thám do phân bố lệch và hiệu ứng bão hòa tín hiệu, 

trong khi phép biến đổi lô-ga-rít giúp cải thiện đáng kể tương quan, đặc biệt với các chỉ 

số NDVI, GNDVI và SR. Kết quả này khẳng định tính cần thiết của việc chuẩn hóa 

logAGB trong quá trình xây dựng mô hình hồi quy ước lượng sinh khối rừng từ dữ liệu 

viễn thám đa nguồn. Để giảm bớt số lượng biến tham gia vào mô hình và giảm sai số 

thì PCA được sử đụng để lựa chọn các biến chính có khả năng giải thích tốt dữ liệu 

phân bố của logAGB, phục vụ cho các phân tích tương quan và hồi quy. 

3.2.3. Phân tích thành phần chính (PCA) 

Để giảm bớt các biến không hoặc ít đóng góp vào tương quan với AGB, sử 
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dụng phân tích PCA để lựa chọn các biến đóng góp chính vào tương quan với AGB. 

Phân tích PCA được sử dụng nhằm giảm số lượng biến đầu vào, loại bỏ hiện tượng 

đa cộng tuyến và nhận diện các biến có mức đóng góp cao nhất trong việc giải thích 

biến thiên AGB. Kết quả phân tích PCA (Hình 3.11) cho thấy:  

- Thành phần chính thứ nhất (Dim.1) giải thích 58,3% phương sai. 

- Thành phần chính thứ hai (Dim.2) giải thích thêm 17,5% phương sai. 

- Tổng cộng hai thành phần đầu tiên giải thích hơn 75% thông tin của toàn 

bộ tập dữ liệu.  

- Khi bổ sung thành phần chính thứ ba (Dim.3), tổng phương sai giải thích 

đạt 84,1%, cho thấy PCA phản ánh tốt cấu trúc dữ liệu. 

 
1: Dim.1; 2: Dim.2; 3: Dim.3; 4: Dim.4,… 

Hình 3.11. Tỷ lệ phương sai giải thích của các thành phần chính 

Phân tích biểu đồ biplot (Hình 3.12) cho thấy các biến được chia thành ba 

nhóm rõ rệt: 
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- Nhóm 1 – Các chỉ số thực vật (NDVI, GNDVI, SR, SIPI): Các vector 

của nhóm này có hướng và chiều tương đồng, thể hiện mối tương quan dương 

chặt chẽ, phản ánh khả năng mô tả mức độ xanh và mật độ tán rừng. Đây là 

nhóm có ý nghĩa sinh thái cao trong phản ánh hàm lượng diệp lục và cường 

độ quang hợp. Tuy nhiên, do tương quan nội tại mạnh (r > 0,85), chỉ nên 

chọn một hoặc hai chỉ số đại diện như NDVI và GNDVI để giảm đa cộng 

tuyến trong mô hình hồi quy (Lu và cộng sự, 2012). 

- Nhóm 2 – Các kênh phổ quang học (B2, B3, B4, B5, B6, B7) và chỉ số 

độ ẩm (NDWI, MSI): Các biến này tập trung chủ yếu dọc theo trục Dim.1, 

phản ánh sự khác biệt về phản xạ phổ giữa các vùng đất trống, cây trồng thấp 

tầng và rừng có mật độ cao. Trong nhóm này, các kênh SWIR (B6, B7) cùng 

NDWI và MSI có độ đóng góp cao nhất (màu đỏ, contrib > 6), cho thấy vai 

trò nổi bật trong phản ánh đặc tính độ ẩm và cấu trúc tán lá. Kết quả phù hợp 

với nhận định của Foody và cộng sự (2003), theo đó vùng phổ SWIR có độ 

nhạy cao đối với hàm lượng nước và vật chất khô của thực vật. 

- Nhóm 3 – Các biến ra-đa (VV, VH): Hai biến này định hướng gần như 

vuông góc với các nhóm quang học, phản ánh nguồn thông tin độc lập. Ra-

đa nhạy với đặc tính cấu trúc 3D của tán rừng và độ gồ ghề bề mặt (Lucas và 

cộng sự, 2006; Mitchard và cộng sự, 2011). Sự tách biệt rõ ràng trên đồ thị 

PCA cho thấy việc kết hợp dữ liệu ra-đa và quang học là cần thiết để nâng 

cao khả năng mô hình hóa sinh khối rừng. 

Ngoài ra, hai biến elevation và slope có vector ngắn và định hướng khác biệt, 

cho thấy ảnh hưởng địa hình tuy không mạnh nhưng mang tính bổ sung thông tin 

quan trọng, đặc biệt ở các vùng rừng tự nhiên phân bố theo đai cao. 
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Hình 3.12. Biểu đồ phân tích mức đóng góp của các biến 

Từ kết quả phân tích trên, để vừa giảm thiểu hiện tượng đa cộng tuyến vừa 

đảm bảo giữ lại thông tin quan trọng, các biến được lựa chọn đưa vào phân tích tiếp 

theo gồm:  

- Nhóm chỉ số thực vật: NDVI, GNDVI 

- Chỉ số độ ẩm và phổ SWIR: NDWI, MSI, B6, B7 

- Yếu tố địa hình: elevation, slope 

- Ra-đa: VV, VH 

Các biến này được xem là có mức đóng góp cao nhất vào tổng phương sai và 

phản ánh đa chiều các đặc tính quang học – cấu trúc – địa hình của thảm phủ rừng. 

Đặc biệt, sự tách biệt của nhóm biến ra-đa (VV, VH) và địa hình (elevation, 

slope) trong không gian PCA chứng tỏ thông tin từ sóng ra-đa và địa hình phản ánh 

cấu trúc tán và độ gồ ghề bề mặt – những đặc trưng không thể quan sát được bằng 

cảm biến quang học (Patel và cộng sự, 2006; Lucas và cộng sự, 2006; Mitchard và 

cộng sự, 2011). Kết quả này củng cố hướng tiếp cận tích hợp quang học – ra-đa nhằm 
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nâng cao độ chính xác trong ước tính AGB. 

Việc áp dụng PCA không chỉ giúp loại bỏ hiện tượng đa cộng tuyến giữa các 

chỉ số quang học vốn có tính tương quan cao (ví dụ NDVI, SAVI, SR) mà còn nâng 

cao tính ổn định của mô hình học máy thông qua việc giảm số chiều dữ liệu đầu vào 

(Jolliffe & Cadima, 2016; Han và Joe, 2024). Hơn nữa, PCA cho phép tích hợp thông 

tin từ nhiều nguồn dữ liệu viễn thám (quang học – ra-đa – địa hình) trong một không 

gian đặc trưng tối ưu, qua đó cải thiện khả năng giải thích biến động sinh khối rừng 

(Wang và cộng sự, 2022). 

Việc PCA xác định được các nhóm biến có tính đại diện cao đồng thời cung 

cấp nền tảng cho các mô hình hồi quy và thuật toán học máy (như RF, SVM). Theo 

Han và Joe (2024) việc giảm số chiều đầu vào thông qua PCA không chỉ cải thiện tốc 

độ xử lý mà còn giúp mô hình học máy ổn định hơn, tránh hiện tượng quá khớp khi 

dữ liệu có tương quan cao giữa các biến. Như vậy, PCA không chỉ đóng vai trò tiền 

xử lý dữ liệu mà còn góp phần quan trọng trong việc tối ưu hóa mô hình ước tính sinh 

khối rừng, đặc biệt trong bối cảnh kết hợp đa nguồn dữ liệu (quang học – ra-đa). 

Nhìn chung, kết quả phân tích dữ liệu mẫu, kiểm tra phân bố, biến đổi lô-ga-

rít, kiểm định tương quan và PCA đã thiết lập được cơ sở khoa học quan trọng cho 

việc xây dựng các mô hình ước tính sinh khối rừng từ dữ liệu viễn thám. Đây là bước 

chuẩn bị cần thiết để tiến hành các phân tích hồi quy và ứng dụng các thuật toán học 

máy Random Forest trong các phần tiếp theo của nghiên cứu. 

3.2.4. Phân tích đa cộng tuyến (VIF - Variance Inflation Factor) 

Sau khi xác định các nhóm biến có ý nghĩa thông qua phân tích PCA, bước 

tiếp theo nhằm đảm bảo tính ổn định và hiệu quả của mô hình là kiểm tra hiện tượng 

đa cộng tuyến (multicollinearity) giữa các biến độc lập. Hiện tượng đa cộng tuyến 

xảy ra khi hai hoặc nhiều biến giải thích có mối tương quan tuyến tính mạnh, dẫn đến 

ước lượng hệ số hồi quy không ổn định, làm tăng phương sai của sai số chuẩn và 

giảm độ tin cậy của mô hình (Dormann và cộng sự, 2013). 
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Kiểm tra hệ số VIF cho các biến được lựa chọn sau phân tích PCA, bao gồm 

nhóm biến quang học (NDVI, GNDVI, NDWI, MSI, B6, B7), ra-đa (VV, VH) và địa 

hình (elevation, slope). 

Kết quả kiểm tra và lựa chọn VIF (Bảng 3.5) cho thấy hầu hết các biến có giá 

trị VIF thấp, nằm trong giới hạn chấp nhận được (VIF = 1,01 - 9,68), chứng tỏ mức 

độ phụ thuộc giữa các biến độc lập không cao. Tuy nhiên, biến MSI có VIF = 9,68, 

tiến sát ngưỡng cảnh báo, cho thấy biến này có thể chia sẻ thông tin tương đối lớn với 

NDWI và B7 - các chỉ số đều phản ánh đặc tính độ ẩm và cấu trúc tán rừng ở vùng 

phổ SWIR. 

Bảng 3.5. Các biến lựa chọn có VIF thấp 

Biến B7 MSI NDWI VH elevation slope 

VIF 4,36 9,68 4,47 1,14 1,37 1,01 

Ngược lại, các biến còn lại như B7 (VIF = 4,36) và NDWI (VIF = 4,47) đều 

có mức tương quan trung bình và mang thông tin bổ sung về đặc tính quang học – độ 

ẩm tán lá. Hai biến địa hình elevation (VIF = 1,37) và slope (VIF = 1,01) có giá trị 

rất thấp, thể hiện tính độc lập cao, phản ánh điều kiện sinh thái của rừng theo độ cao 

và địa hình. Biến ra-đa VH (VIF = 1,14) cũng cho thấy tính độc lập rõ rệt, minh chứng 

rằng thông tin phản xạ từ ra-đa không bị trùng lặp với các biến quang học, phù hợp 

với đặc tính phản ánh cấu trúc tán rừng và độ gồ ghề bề mặt (Lucas và cộng sự, 2006; 

Mitchard và cộng sự, 2011). Sử dụng các biến này để thực hiện phân tích hồi quy 

tuyến tính đa biến, phi tuyến tính đa biến và RF cho dữ liệu sinh khối rừng để lựa 

chọn mô hình hồi quy phù hợp với dữ liệu khu vực nghiên cứu. 

Tóm lại, kết quả phân tích thống kê, tương quan, PCA và kiểm tra VIF cho 

thấy bộ dữ liệu viễn thám và địa hình có mối quan hệ chặt chẽ với AGB và có thể sử 

dụng hiệu quả trong mô hình hóa. Việc biến đổi logAGB giúp ổn định phương sai và 

cải thiện tính tuyến tính của dữ liệu, đáp ứng giả định của mô hình hồi quy. Các biến 

đầu vào được lựa chọn cuối cùng bao gồm các đặc trưng quang học, chỉ số thực vật, 

thông tin địa hình và kênh ra-đa, đảm bảo tính đa dạng thông tin phổ – sinh thái và 

hạn chế hiện tượng đa cộng tuyến. 
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Bộ biến này được sử dụng thống nhất cho ba mô hình ước lượng gồm hồi quy 

tuyến tính đa biến (OLS), mô hình phi tuyến tổng quát (GAM) và mô hình học máy 

RF. Cách tiếp cận đồng bộ này giúp so sánh hiệu năng giữa các thuật toán trên cùng 

cơ sở dữ liệu, đồng thời kiểm chứng khả năng mô hình hóa các mối quan hệ tuyến 

tính, phi tuyến và phi tham số trong ước lượng sinh khối rừng. 

3.3. Xây dựng mô hình ước tính AGB từ dữ liệu viễn thám 

3.3.1. Ước tính AGB sử dụng mô hình hồi quy tuyến tính 

3.3.1.1. Hồi quy tuyến tính đơn biến 

Từ các biến đầu vào đã lựa chọn ở trên, để xác định mối quan hệ giữa các chỉ 

số viễn thám và sinh khối rừng, nghiên cứu tiến hành phân tích hồi quy đơn biến với 

biến phụ thuộc đã được chuyển đổi logAGB (tấn/ha). Các biến độc lập bao gồm chỉ 

số thực vật (MSI, NDWI), kênh phổ Landsat (B7 – SWIR2), cùng dữ liệu ra-đa 

Sentinel-1 (VH) và dữ liệu địa hình (elevation, slope).  

Kết quả phân tích hồi quy tuyến tính đơn biến (Bảng 3.6) cho thấy có sự khác 

hầu hết các biến qua phân tích chọn lọc biến đều có mối tương quan có ý nghĩa thống 

kê với logAGB. 

Bảng 3.6. Kết quả hồi quy đơn biến giữa logAGB và các biến viễn thám 

Biến R² P-value 

B7 0,2852 1,922e-06 

MSI 0,2016 9,671e-05 

NDWI 0,1025 0,0069 

VH 0,01447 -1,845e-05 

elevation 0,4386 4,271e-10 

slope 0,009196 0,4297 

Kết quả cho thấy biến độ cao địa hình (elevation) có hệ số xác định cao nhất 

trong (R² = 0,4386), thể hiện mối quan hệ chặt và có ý nghĩa thống kê rất cao (p < 

0,001) với logAGB. Kết quả này phản ánh xu hướng sinh khối rừng tăng dần theo độ 

cao, phù hợp với đặc điểm phân bố rừng tự nhiên ở khu vực Đắk Lắk, nơi các khu 

vực địa hình núi cao, có độ che phủ rừng lớn hơn và ít chịu tác động của hoạt động 

nhân sinh. 
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Trong nhóm biến quang học, kênh phổ hồng ngoại sóng ngắn B7 thể hiện mối 

quan hệ mạnh và có ý nghĩa cao với logAGB (R² = 0,2852; p < 0,001). Kết quả này 

khẳng định vai trò của vùng phổ SWIR trong phản ánh cấu trúc tán rừng, độ ẩm thực 

vật và mật độ sinh khối. Chỉ số độ ẩm MSI cũng thể hiện mối tương quan đáng kể (R² 

= 0,2016; p < 0,001), cho thấy khả năng phản ánh sự thay đổi hàm lượng nước trong 

tán lá và đất – yếu tố có quan hệ chặt chẽ với trữ lượng sinh khối rừng. 

Chỉ số NDWI có mối quan hệ yếu hơn nhưng vẫn đạt ý nghĩa thống kê (R² = 

0,1025; p < 0,01), phản ánh rằng độ ẩm bề mặt và mật độ tán lá vẫn góp phần nhất 

định vào việc giải thích sự biến thiên sinh khối. Biến ra-đa (VH) có tương quan thấp 

với logAGB tuy nhiên vẫn có ý nghĩa thống kê. Ngược lại, độ dốc (slope) cho giá trị 

R² rất thấp (0,0092) và không có ý nghĩa thống kê (p = 0,4297 > 0,05), cho thấy tác 

động của chúng đến sinh khối rừng là không đáng kể khi xét riêng biệt. Đặc biệt, tín 

hiệu ra-đa VH (band C) bị ảnh hưởng bởi hiện tượng bão hòa tán xạ ở các khu vực 

rừng dày, làm giảm khả năng phản ánh chính xác sự thay đổi sinh khối (Omar và 

cộng sự, 2017). 

Tổng hợp lại, các biến có ảnh hưởng đáng kể và có ý nghĩa thống kê cao gồm 

elevation, B7, MSI và NDWI, là những biến có tiềm năng cao để đưa vào mô hình hồi 

quy đa biến hoặc thuật toán học máy trong các bước tiếp theo. Kết quả này cũng phù 

hợp với nhận định của Lu và cộng sự (2012) và Zhang và cộng sự (2019), khi các tác 

giả nhấn mạnh rằng việc kết hợp thông tin độ cao, độ ẩm và vùng phổ SWIR có thể 

cải thiện đáng kể khả năng ước lượng sinh khối rừng từ dữ liệu viễn thám đa nguồn. 

Ngoài ra, theo tiêu chuẩn phân loại mức độ tương quan của Cohen (1988), các mô 

hình logAGB có |r| tương ứng với R² từ 0,04 đến 0,12, tương đương mức tương quan 

yếu đến trung bình, song đủ để phản ánh xu hướng biến động của sinh khối theo biến 

quang học trong điều kiện rừng nhiệt đới phức tạp. 

Trong số các biến viễn thám được kiểm tra, elevation và B7 (SWIR2) cho 

thấy mối tương quan chặt chẽ và có ý nghĩa thống kê với logAGB. Điều này là do 

kênh phổ B7 là kênh phổ hồng ngoại sóng ngắn, nhạy cảm với hàm lượng nước trong 
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thực vật, độ ẩm đất và cấu trúc tán lá (Foody và cộng sự, 2003; Lu và cộng sự, 2014). 

Rừng có sinh khối cao thường có mật độ tán dày, chứa nhiều nước và vật chất hữu 

cơ, dẫn đến sự thay đổi rõ rệt trong phản xạ SWIR2 (Đặng Thị Ngọc An và cộng sự, 

2019; Mancino và cộng sự, 2020). Do đó, B7 thể hiện khả năng phân biệt tốt hơn giữa 

các trạng thái sinh khối khác nhau. 

Kết quả phân tích hồi quy tuyến tính đơn biến cho thấy rằng việc kết hợp các 

kênh phổ vùng đặc biệt là B7, độ cao địa hình và chỉ số NDWI có ý nghĩa quan trọng 

trong xây dựng mô hình ước tính sinh khối rừng, và có tiềm năng cao hơn so với các 

chỉ số phổ cận hồng ngoại hoặc chỉ số thực vật truyền thống. Đây là những biến tiềm 

năng có thể được sử dụng trong các mô hình hồi quy đa biến hoặc mô hình học máy 

để ước tính sinh khối rừng chính xác hơn. 

3.3.1.2. Hồi quy tuyến tính đa biến 

Sau khi thực hiện kiểm tra tương quan Pearson, phân tích PCA và loại bỏ các 

biến gây đa cộng tuyến (mục 3.2), mô hình hồi quy tuyến tính đa biến được xây dựng 

với biến phụ thuộc là logAGB và sáu biến độc lập gồm elevation, slope, B7, MSI, 

NDWI, và VH.  

Kết quả phân tích cho thấy mô hình hồi quy cho kết quả cải thiện hơn so với 

phân tích hồi quy tuyến tính đơn biến. Mô hình cho hệ số xác định R2= 0,506, R2 hiệu 

chỉnh = 0,459. Với các thông số thống kê được trình bày ở Bảng 3.7. 

Bảng 3.7. Kết quả phân tích hồi quy tuyến tính đa nhân tố với logAGB 

 Estimate  Std. Error  t_value Pr(>|t|) 

(Intercept) 2,5774 4,3653 0,590 0,557 

B7 -23,6829 10,5375 –2,247 0,0281* 

NDWI –0,7015 4,4425 –0,158 0,875 

VH 0,1011 0,5666 0,179 0,859 

Elevation 2,6524 0,5117 5,183 2,45e–06*** 

Slope 0,2895 0,4648 0,623 0,536 

MSI 2,3182 3,3667  0,689 0,494 
Ghi chú:  *: p <0,05     **: p <0,01         ***: p <0,001      

Kết quả mô hình hồi quy đa nhân tố với logAGB cho thấy mức độ giải thích 

của mô hình được cải thiện đáng kể so với mô hình sử dụng đơn biến (R² tăng từ 0,44 
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(elevation) lên 0,51). Điều này chứng tỏ các biến khác ngoài elevation đã giúp tăng 

cường tính tuyến tính và giảm phương sai của sai số, từ đó mô hình trở nên ổn định 

và phù hợp hơn. 

Trong các biến độc lập, hai biến có ý nghĩa thống kê cao là: 

- elevation (Estimate = 2,65; p < 0,001) – thể hiện ảnh hưởng dương 

mạnh đến logAGB. Điều này phù hợp với thực tế khi các khu vực có 

độ cao lớn hơn (đặc biệt vùng núi phía Nam và Đông Nam tỉnh) thường 

có rừng tự nhiên lâu năm, tán dày và trữ lượng sinh khối cao hơn. 

- B7 (Estimate = -23,68; p < 0,05) – có ảnh hưởng nghịch đến logAGB. 

B7 phản ánh phản xạ vùng hồng ngoại sóng ngắn, nhạy với độ ẩm và 

cấu trúc tán lá; khi sinh khối tăng, năng lượng phản xạ giảm mạnh do 

tán hấp thụ nhiều bức xạ, dẫn đến mối quan hệ âm rõ rệt. 

Các biến còn lại như NDWI, MSI, VH và slope không thể hiện ý nghĩa thống 

kê rõ ràng (p > 0,1), cho thấy ảnh hưởng riêng lẻ của chúng đến sinh khối rừng không 

mạnh, hoặc đã bị bao hàm trong các biến quang học và địa hình khác. 

Nghiên cứu tiếp tục lựa chọn 2 biến độc lập có tương quan cao với logAGB 

là elevation và B7 để thử nghiệm phân tích hồi quy với mô hình đơn giản (2 biến). 

Kết quả cho thấy mô hình tuyến tính đa biến đơn giản có dạng: 

logAGB = 3,9214 -15,6052*B7 + 2,6016*elevation 

Mô hình có hệ số xác định R² = 0,4954, R² hiệu chỉnh = 0,4803, F(2,67) = 

32,89 và p < 0,001; Sai số chuẩn của phần dư (Residual SE) = 0,8506. Kết quả này 

cho thấy mô hình giải thích được khoảng 49,5% biến thiên của logAGB, một mức độ 

phù hợp trung bình thấp đối với mô hình tuyến tính trong nghiên cứu viễn thám sinh 

khối. Cả hai biến độc lập đều có ý nghĩa thống kê cao (p < 0,01), chứng minh rằng 

chúng đóng vai trò quan trọng trong việc giải thích sự biến động của sinh khối rừng. 

So với mô hình đơn biến (R² ≈ 0,18), mô hình đa biến đã cải thiện đáng kể 

khả năng ước lượng và giảm sai số phần dư (R2 = 0,51 đối với mô hình 6 biến và R2 
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= 0,4954 với mô hình đơn giản với 2 biến) cho cho thấy hiệu quả khi kết hợp dữ liệu 

quang học và ra-đa trong ước tính sinh khối bằng mô hình tuyến tính đa biến cũng 

như đa biến đơn giản cho hiệu quả ước lượng tốt hơn hẳn so với đơn biến. Mặc dù hệ 

số xác định chưa cao, kết quả này được xem là mức chấp nhận được trong các nghiên 

cứu viễn thám sinh khối rừng nhiệt đới, vốn chịu ảnh hưởng bởi đặc tính phi tuyến 

và độ phức tạp của cấu trúc tán (Tian và cộng sự, 2023; Mutanga và cộng sự, 2016). 

Như vậy, mô hình rút gọn đã loại bỏ hiện tượng đa cộng tuyến, đồng thời sử 

dụng các biến có ý nghĩa sinh học và thống kê trong ước lượng sinh khối rừng. Kết 

quả này phù hợp với xu hướng chung của các nghiên cứu gần đây, cho rằng việc kết 

hợp dữ liệu quang học (NDWI, SWIR, MSI) và ra-đa (VH) giúp cải thiện đáng kể độ 

chính xác trong ước lượng sinh khối (Nguyễn Thanh Tuấn và cộng sự, 2022; Qasim 

và cộng sự, 2023). 

Với mong đợi nâng cao độ chính xác ước lượng, nghiên cứu tiếp tục áp dụng 

mô hình hồi quy phi tuyến và thuật toán học máy RF. Các phương pháp này cho phép 

mô phỏng các mối quan hệ phi tuyến phức tạp, tự động nhận diện tương tác giữa các 

biến độc lập và hạn chế ảnh hưởng của đa cộng tuyến. Việc so sánh hiệu suất giữa 

hồi quy tuyến tính, hồi quy phi tuyến và RF giúp đánh giá toàn diện hơn khả năng 

ước tính sinh khối rừng từ dữ liệu viễn thám đa nguồn, từ đó xác định mô hình tối ưu 

cho giai đoạn ước lượng và lập bản đồ AGB. 

3.3.2. Ước tính AGB rừng sử dụng mô hình hồi quy phi tuyến 

Để khắc phục những hạn chế của mô hình hồi quy tuyến tính (R² hiệu chỉnh 

thấp và hiện tượng đa cộng tuyến giữa các biến quang học), nghiên cứu tiếp tục áp 

dụng mô hình hồi quy phi tuyến bằng phương pháp Mô hình cộng tính tổng quát - 

GAM. Ưu điểm của GAM là cho phép mô tả linh hoạt mối quan hệ phi tuyến giữa 

sinh khối rừng (logAGB) và các biến độc lập từ ảnh viễn thám thông qua các hàm 

trơn (smooth functions, ký hiệu s(·)). Do mô hình hồi quy GAM phản ánh cộng tuyến 

tính của các biến riêng lẻ và không bị ảnh hưởng nghiêm trọng bởi đa cộng tuyến nên 

nghiên cứu thử nghiệm xây dựng mô hình hồi quy phi tuyến giữa logAGB với toàn 
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bộ các biến đầu vào (gam1) và với các biến chọn lọc (gam2).  

Kết quả mô hình GAM toàn bộ biến (gam1) cho thấy R² hiệu chỉnh đạt 0,619 

và tỉ lệ giải thích phương sai (Deviance explained) là 72,5%. Một số biến có ý nghĩa 

thống kê rõ rệt, gồm: ARVI (p = 0,01787), VH (p = 0,00467), VV (p = 0,00703) và 

elevation (p = 1,24e-06); bên cạnh đó, B5 (p = 0,07846) có ý nghĩa ở mức cận biên. 

Điều này chứng tỏ rằng một số chỉ số thực vật, ra-đa và địa hình có quan hệ phi tuyến 

đáng kể với logAGB. Kết quả này cũng tương đồng với một số nhận định của các 

nghiên cứu trước như Wai và cộng sự, 2022; Đinh Bá Duy, 2024; Đỗ Thị Nhung và 

cộng sự, 2024, Song và cộng sự, 2024. 

Sử dụng các biến được lựa chọn sau phân tích PCA, mô hình GAM rút gọn 

(gam2) được xây dựng với B7, NDWI, MSI, VH, elevation và slope. Kết quả cho thấy 

R² hiệu chỉnh = 0,535 và tỉ lệ giải thích phương sai = 59%. Mặc dù thấp hơn so với 

mô hình đầy đủ, mức độ phù hợp vẫn được duy trì đồng thời giúp đơn giản hóa cấu 

trúc mô hình. Đáng chú ý, biến elevation thể hiện ảnh hưởng mạnh mẽ và có ý nghĩa 

thống kê cao (p < 0,001), trong khi các biến còn lại chỉ có xu hướng ảnh hưởng nhưng 

chưa đạt mức ý nghĩa. Kết quả mô hình GAM được trình bày trong Bảng 3.8. 

Bảng 3.8. Kết quả mô hình GAM 

Mô hình 
Biến quan trọng 
(p < 0,05) 

R² hiệu chỉnh 
Tỉ lệ giải thích 
phương sai 

GAM đầy đủ 
(gam1) 

ARVI, VH, VV, B5 
(cận biên) 

0,619 72,5% 

GAM rút gọn 
(gam2) 

elevation  0,535 59,0% 

Do các biến trong GAM được ước lượng bằng hàm trơn thay vì hệ số cố định, 

nên mô hình không thể viết thành biểu thức tuyến tính “đóng” như hồi quy truyền 

thống. Kết quả phân tích được minh họa thông qua các đồ thị hàm trơn (Hình 3.13). 

Các đường cong (nét liền) thể hiện quan hệ phi tuyến giữa biến độc lập (chỉ số viễn 

thám, kênh ra-đa) và biến phụ thuộc logAGB, trong khi các phần màu xám đen biểu 

thị khoảng tin cậy 95%. 
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Hình 3.13. Đồ thị hàm trơn từ mô hình GAM 

Kết quả đồ thị hàm trơn cho thấy, đường cong hồi quy thể hiện mối quan hệ 

nghịch rõ rệt giữa B7 và logAGB. Khi giá trị phản xạ ở kênh SWIR2 tăng, logAGB 

giảm mạnh, đặc biệt trong khoảng giá trị B7 < 0,10, phản ánh khả năng hấp thụ mạnh 

năng lượng ở vùng SWIR của các tán rừng dày có sinh khối lớn. Sau ngưỡng này, 

đường cong dần ổn định, cho thấy hiệu ứng bão hòa khi phản xạ SWIR2 không còn 

tăng tỷ lệ nghịch rõ rệt với sinh khối. Kết quả này khẳng định tính nhạy cảm cao của 

kênh SWIR2 đối với độ ẩm, cấu trúc tán và mật độ rừng. Xu hướng này phù hợp với 

các nghiên cứu của Foody và cộng sự (2003) và Lu và cộng sự (2012). 

NDWI có xu hướng tác động yếu và không tuyến tính rõ ràng đến logAGB. 

Trong hầu hết khoảng giá trị, đường cong gần như phẳng, cho thấy NDWI không phải 

là biến chi phối trong mô hình, mặc dù có sự tăng nhẹ của logAGB ở các vùng có 

NDWI cao (thảm thực vật ẩm hơn). Điều này cho thấy NDWI chỉ phản ánh một phần 

độ ẩm bề mặt và lá cây, không đủ mạnh để giải thích biến động sinh khối trong khu 

vực RTX có cấu trúc tán phức tạp như Đắk Lắk. 

Biến MSI thể hiện xu hướng tăng dần và phi tuyến yếu với logAGB. Khi MSI 
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tăng (nghĩa là mức căng thẳng ẩm giảm), logAGB có xu hướng tăng, phản ánh mối 

liên hệ thuận chiều giữa độ ẩm và sinh khối. Tuy nhiên, khoảng tin cậy 95% khá rộng, 

cho thấy biến này có mức đóng góp vừa phải trong mô hình. 

Biến VH cho thấy mối quan hệ rất yếu với logAGB, thể hiện qua đường cong 

gần như nằm ngang và khoảng tin cậy rộng. Điều này phản ánh hiện tượng bão hòa 

tín hiệu ra-đar thường gặp ở rừng nhiệt đới, khi mật độ tán cao khiến sóng ra-đa tán 

xạ mạnh và không còn tỷ lệ thuận với sinh khối. Kết quả tương đồng với các nghiên 

cứu của Joshi và cộng sự (2017) khẳng định rằng dữ liệu ra-đa tần số C (Sentinel-1) 

có giới hạn trong việc ước tính sinh khối cao. 

Biến elevation thể hiện quan hệ phi tuyến thuận mạnh nhất với logAGB. Sinh 

khối tăng rõ rệt từ vùng thấp lên vùng trung bình, sau đó xu hướng ổn định ở khu vực 

cao hơn. Điều này phù hợp với quy luật phân bố rừng theo độ cao, nơi các khu vực 

cao thường có độ che phủ lớn, ẩm độ cao và ít chịu tác động của hoạt động nhân sinh. 

Đây là biến đóng góp mạnh nhất trong mô hình GAM, được thể hiện qua đường cong 

có độ dốc lớn và khoảng tin cậy hẹp. 

Mô hình GAM đã cải thiện đáng kể khả năng mô phỏng phi tuyến của các 

biến, thể hiện rõ hơn bản chất phi tuyến trong quan hệ giữa sinh khối rừng và các yếu 

tố phản xạ phổ - địa hình. Trong các biến, elevation và B7 thể hiện ảnh hưởng mạnh 

và ổn định nhất, trong khi VH, NDWI và MSI chỉ đóng vai trò bổ trợ. 

Sự khác biệt hình dạng giữa các hàm hồi quy riêng phần (s(x)) chứng tỏ quan 

hệ giữa logAGB và các nhân tố ảnh viễn thám không tuân theo mô hình tuyến tính 

đơn giản, do đó việc sử dụng GAM là phù hợp trong bối cảnh sinh thái phức tạp của 

RTX ở Đắk Lắk. 

Các kết quả cho thấy quan hệ giữa tín hiệu viễn thám và sinh khối không hoàn 

toàn tuyến tính, mà có dạng phi tuyến yếu. Điều này phù hợp với nhận định của Lu 

và cộng sự (2014) rằng mối quan hệ giữa AGB và chỉ số phổ thường là phi tuyến, do 

sự thay đổi trong cấu trúc tán, chiều cao cây và độ che phủ. Việc sử dụng mô hình 
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GAM cho phép xác định xu hướng phi tuyến này mà mô hình hồi quy tuyến tính 

không thể nắm bắt. Theo Levine và cộng sự (2020), GAM giúp mô tả linh hoạt các 

quan hệ phi tuyến mà không cần giả định trước dạng hàm, do đó phù hợp với các bài 

toán viễn thám rừng có tín hiệu đa chiều và nhiễu cao.  Việc mô hình GAM phát hiện 

được quan hệ phi tuyến yếu cho thấy tiềm năng phát triển các mô hình phi tuyến nâng 

cao như RF nhằm nâng cao độ chính xác ước tính AGB (Đặng Thị Ngọc An và cộng 

sự (2019). So với hồi quy tuyến tính, mô hình GAM cho thấy khả năng nắm bắt mối 

quan hệ phi tuyến giữa logAGB và các biến phổ viễn thám, đồng thời cải thiện mức 

giải thích phương sai. Tuy nhiên, giá trị R² hiệu chỉnh (0,535) và tỉ lệ giải thích 

phương sai (59%) vẫn chưa cao, phản ánh những hạn chế khi dữ liệu có sự tương tác 

phức tạp. Do đó, nghiên cứu tiếp tục áp dụng phương pháp RF nhằm khắc phục các 

nhược điểm trên.  

3.3.3. Ước tính AGB rừng sử dụng mô hình RF 

Đối với mô hình hồi quy phi tham số, đặc biệt là mô hình học máy như RF 

thì phân phối chuẩn của dữ liệu và đa cộng tuyến không ảnh hưởng đến kết quả hồi 

quy cũng như nhằm xác định phương án tối ưu trong việc lựa chọn biến đầu vào và 

đánh giá ảnh hưởng của các nhóm biến đến hiệu quả mô hình, nghiên cứu tiến hành 

thử nghiệm hai cấu hình của mô hình RF: (i) RF–All_var.: sử dụng toàn bộ biến đầu 

vào và (ii) RF–Selected (VH): sử dụng nhóm biến quan trọng đã được lựa chọn (B7, 

NDWI, MSI, VH, elevation, slope). 

3.3.3.1. Kết quả phân tích RF cho toàn bộ các biến (RF-All_var.) 

Mô hình RF được huấn luyện với số cây quyết định (ntree) = 2000 và số biến 

được chọn tại mỗi lần chia nhánh (mtry) = 6 trên toàn bộ 18 biến đầu vào (bao gồm 

các chỉ số quang học, ra-đa và địa hình). Kết quả cho thấy mô hình đạt độ phù hợp 

cao với R² = 0,882, RMSE = 0,423 và MAE = 0,295; Các giá trị này chứng tỏ mô 

hình RF có độ phù hợp rất tốt giữa giá trị ước lượng và giá trị thực tế của logAGB, 

thể hiện khả năng ước lượng của thuật toán trong việc mô hình hóa các mối quan hệ 

phi tuyến và tương tác phức tạp giữa các biến viễn thám. Mức R² cao cho thấy mô 
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hình giải thích được tới 88,2% phương sai của log(AGB), vượt trội so với OLS (R² ≈ 

0,49) và GAM (~0,61). Tuy nhiên, khi đánh giá bằng dữ liệu kiểm định nội tại (OOB), 

hiệu suất suy giảm rõ rệt (R²_test = 0,395, RMSE_test = 1,073, MAE_test = 0,745), 

cho thấy mô hình có xu hướng quá khớp (overfitting). Tổng thể, RF–All_var. đạt độ 

phù hợp cao trên tập huấn luyện, nhưng khả năng khái quát hóa còn hạn chế do ảnh 

hưởng của đa cộng tuyến và sự dư thừa thông tin giữa các biến (Hình 3.14). Ngoài ra 

đồ thị phân bố tương quan giữa dữ liệu thực đo và dữ liệu ước tính qua mô hình 

(đường màu đỏ) cũng cho thấy mô hình vẫn còn hiện tượng ước lượng cao đối với 

vùng giá trị thấp và ước lượng thấp cho vùng giá trị cao của AGB.  

 

Hình 3.14. Tương quan logAGB thực tế và ước tính 

Trong cấu trúc của mô hình RF, các biến có độ quan trọng (variable 

importance) cao nhất bao gồm elevation, B7, MSI, và NDWI, cho thấy sự đóng góp 

đồng thời của các yếu tố địa hình, phản xạ phổ hồng ngoại trung, và độ ẩm trong tán 

rừng đối với sự biến thiên sinh khối. Sự hiện diện của các biến ra-đa (VH, VV) tuy có 

mức đóng góp thấp hơn, nhưng giúp tăng tính ổn định của mô hình nhờ khả năng 

khắc phục ảnh hưởng của mây che phủ và độ ẩm đất, đặc biệt trong khu vực rừng 

nhiệt đới ẩm như Đắk Lắk. 
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Kết quả phân tích độ quan trọng của biến (Hình 3.15) trong mô hình RF (với 

2000 cây và tất cả 18 biến đầu vào) cho thấy sự khác biệt rõ rệt giữa mức đóng góp 

của các nhóm biến quang học, địa hình và ra-đa đối với khả năng ước lượng sinh khối 

rừng (logAGB). 

 

Hình 3.15. Mức độ quan trọng của các biến trong mô hình RF 

Cả hai thước đo %IncMSE và IncNodePurity đều chỉ ra rằng elevation là biến 

có mức độ quan trọng cao nhất, vượt trội so với các biến còn lại. Điều này khẳng định 

vai trò chi phối của yếu tố địa hình trong phân bố và biến thiên sinh khối, phản ánh 

thực tế sinh thái – rừng tự nhiên tại Đắk Lắk thường tập trung ở khu vực có độ cao 

trung bình, nơi điều kiện ẩm độ và thổ nhưỡng thuận lợi cho sinh trưởng cây gỗ lớn. 

Tiếp theo, các băng phổ vùng nhìn thấy và cận hồng ngoại (B2, B3, B4, B6, 

B7) đóng góp đáng kể, đặc biệt B3 và B7 đạt giá trị %IncMSE cao. Điều này cho thấy 

khả năng phản ánh cấu trúc tán rừng và hàm lượng nước của các kênh phổ này. B7 

thể hiện quan hệ nghịch với logAGB — phù hợp với bản chất quang học khi sinh 

khối tăng thì phản xạ vùng hồng ngoại trung giảm. Các kết quả này tương đồng với 

phân tích hồi quy và PCA, trong đó nhóm kênh hồng ngoại sóng ngắn và kênh ánh 

sáng đỏ có tương quan mạnh với logAGB. 

Nhóm chỉ số phổ (ARVI, MSI, SIPI) thể hiện đóng góp trung bình, cho thấy 

các chỉ số này giúp bổ sung thông tin phổ tổng hợp về tình trạng thực vật và căng 



97 

 

 

 

thẳng ẩm. Trong đó, MSI thể hiện vai trò quan trọng tương đối, khẳng định ảnh hưởng 

của độ ẩm tán và cấu trúc tán lá đến sinh khối. 

Các biến ra-đa (VH, VV) có mức quan trọng thấp hơn so với biến quang học 

và địa hình, tuy nhiên vẫn đóng vai trò bổ sung, phản ánh cấu trúc tán và độ gồ ghề 

bề mặt - các yếu tố khó nắm bắt bằng dữ liệu quang học. Sự kết hợp ra-đa và quang 

học được chứng minh là giúp tăng độ chính xác ước lượng, như nhiều nghiên cứu 

trước đây (Lefsky và cộng sự, 2007; Avitabile và cộng sự, 2016). 

Cuối cùng, biến slope có mức đóng góp rất thấp trong cả hai chỉ số, cho thấy 

độ dốc không phải là yếu tố có ảnh hưởng đáng kể đến sự phân bố sinh khối ở quy 

mô tỉnh. 

Tổng thể, kết quả độ quan trọng biến từ mô hình RF khẳng định: 

- elevation là yếu tố địa hình chi phối chính, 

- Các kênh phổ SWIR và Green (B6,B7 và B3,) cung cấp thông tin quang 

học then chốt, 

- Chỉ số MSI và ARVI có vai trò bổ trợ về độ ẩm và trạng thái sinh lý 

thực vật, 

- Ra-đa VV và VH mang tính thông tin cấu trúc, bổ sung cho dữ liệu 

quang học. 

Như vậy, việc kết hợp hài hòa giữa biến địa hình – quang học – ra-đa là hướng 

tiếp cận hiệu quả nhằm nâng cao độ chính xác của mô hình ước lượng sinh khối rừng 

bằng viễn thám đa nguồn. Bên cạnh đó, để giảm nhiễu và tối ưu hóa mô hình hồi quy, 

mô hình hồi quy RF cho các biến chọn lọc đã được xác định thông qua phân tích PCA 

được thử nghiệm để đối chiếu, so sánh hiệu quả ước lượng của mô hình RF. 

3.3.3.2. Mô hình RF chọn lọc (RF_Selected) 

Với cùng cấu hình tham số (ntree = 2000; mtry = 6), mô hình RF được huấn 

luyện lại chỉ với 6 biến chọn lọc. Kết quả đạt R²_train = 0,882, RMSE_train = 0,404, 
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MAE_train = 0,297 (tương đương RMSE và MAE của AGB lần lượt là 2,54 tấn/ha 

và 1,98 tấn/ha), phản ánh mức độ phù hợp cao tương đương mô hình toàn biến Hình 

3.16. 

 

Hình 3.16. Tương quan logAGB thực tế và ước tính (chọn lọc biến) 

Đáng chú ý, khi kiểm định bằng dữ liệu OOB, R²_test tăng lên 0,606 (cao hơn 

0,211 so với mô hình toàn biến), trong khi RMSE_test = 0,894 và MAE_test = 0,614, 

giảm tương ứng 16,7 và 17,6% sai số so với mô hình gồm tất cả các biến. Kết quả 

này cho thấy việc loại bỏ các biến dư thừa giúp mô hình giảm hiện tượng overfitting 

và tăng tính ổn định.  

Biểu đồ phân tán giữa logAGB thực tế và logAGB ước tính cho thấy các điểm 

dữ liệu phân bố gần đường hồi quy lý tưởng (đường nét đứt), chứng tỏ mô hình RF 

có khả năng dự báo tốt trên toàn bộ dải giá trị sinh khối. Sai số xuất hiện chủ yếu ở 

các vùng có sinh khối rất thấp hoặc rất cao, do ảnh hưởng của sự biến thiên phổ và 

độ bão hòa tín hiệu quang học trong vùng rừng dày. 

Phân tích độ quan trọng biến dựa trên hai chỉ tiêu: %IncMSE (mức tăng sai 

số trung bình khi loại biến) và IncNodePurity (mức giảm độ nhiễu trung bình của các 

nút chia trong cây quyết định). Hình 3.17 chỉ ra elevation, B7 (SWIR2) và MSI là ba 
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yếu tố có đóng góp lớn nhất trong giải thích logAGB, các biến ra-đa (VH) và chỉ số 

NDWI có vai trò bổ trợ trong phân biệt vùng rừng – không rừng và phản ánh tình 

trạng ẩm của thảm thực vật.       

 

Hình 3.17. Tương quan logAGB thực tế và ước tính (chọn lọc biến) 

Biến elevation có giá trị %IncMSE cao nhất (56,26%) và IncNodePurity lớn 

nhất (52,03), cho thấy yếu tố địa hình đóng vai trò quyết định trong phân bố và tích 

lũy sinh khối rừng. Sinh khối thường cao ở các khu vực rừng tự nhiên có độ cao trung 

bình – nơi có độ ẩm khí hậu và cấu trúc tán phát triển mạnh. 

Biến B7 thể hiện mức độ quan trọng thứ hai, phản ánh mối quan hệ nghịch 

giữa phản xạ phổ vùng hồng ngoại sóng ngắn và mật độ tán rừng; độ phản xạ giảm 

khi sinh khối tăng do tán cây hấp thụ mạnh năng lượng quang học. 

Biến MSI có giá trị %IncMSE = 18,55%, cho thấy chỉ số độ ẩm có ảnh hưởng 

đáng kể đến sinh khối rừng, đặc biệt trong việc phản ánh mức khô hạn của tán lá và 

đất nền. 

Biến VH đóng góp ở mức trung bình, phản ánh cấu trúc tán rừng nhưng bị 

giới hạn do hiện tượng bão hòa tín hiệu ra-đa ở rừng có mật độ cao. 

Biến NDWI có vai trò bổ trợ trong phản ánh vùng đất trống hoặc ẩm thấp, góp 

phần cải thiện phân biệt giữa rừng và không rừng. 

Biến slope có tầm quan trọng thấp nhất, phù hợp với kết quả hồi quy tuyến 
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tính trước đó khi độ dốc không thể hiện mối quan hệ rõ ràng với sinh khối ở quy mô 

tỉnh. 

Để xác định các thông số của mô hình RF phù hợp với dữ liệu biến chọn lọc, 

nghiên cứu tiến hành thử nghiệm mô hình RF với các giá trị ntree và mtry khác nhau 

để lựa chọn mô hình phù hợp nhất với dữ liệu chọn lọc biến. Kết quả thử nghiệm các 

cấu hình RF với ba mức số cây (ntree = 1000, 1500, 2000) và bốn giá trị mtry (3–6) 

cho thấy hiệu năng mô hình nhìn chung ổn định như được trình bày ở Bảng 3.9, với 

R²_train cao (0,882–0,888) và sai số huấn luyện thấp. Tuy nhiên, tiêu chí quan trọng 

hơn để lựa chọn mô hình phù hợp là khả năng khái quát hóa, thể hiện qua R²_test và 

các chỉ số sai số RMSE_test, MAE_test. 

Bảng 3.9. Hiệu suất mô hình RF theo các cấu hình khác nhau 

ntree mtry 
Train Test 

R2 RMSE MAE R2 RMSE MAE 

1000 3 0,884 0,416 0,303 0,629 0,892 0,617 

1000 4 0,883 0,408 0,301 0,621 0,887 0,609 

1000 5 0,887 0,401 0,293 0,630 0,877 0,603 

1000 6 0,886 0,398 0,292 0,606 0,893 0,604 

1500 3 0,883 0,417 0,299 0,626 0,890 0,600 

1500 4 0,886 0,405 0,296 0,623 0,885 0,607 

1500 5 0,888 0,399 0,292 0,631 0,877 0,607 

1500 6 0,884 0,401 0,295 0,632 0,871 0,596 

2000 3 0,888 0,409 0,296 0,616 0,900 0,613 

2000 4 0,887 0,401 0,296 0,627 0,880 0,602 

2000 5 0,884 0,403 0,295 0,626 0,881 0,607 

2000 6 0,882 0,404 0,297 0,606 0,894 0,614 

Thứ nhất, xét theo số lượng cây quyết định, khi ntree tăng từ 1000 lên 2000 

không làm cải thiện rõ rệt hiệu quả mô hình. R²_test dao động quanh 0,616–0,632, 

khác biệt rất nhỏ giữa ba mức ntree. Điều này cho thấy mô hình RF đã đạt trạng thái 

hội tụ từ khoảng 1000–1500 cây, và việc tăng thêm số cây chỉ làm tăng thời gian tính 

toán mà không mang lại cải thiện đáng kể. 

Thứ hai, mtry có ảnh hưởng rõ rệt hơn đến hiệu năng dự báo. Trong cả ba 

mức ntree, giá trị mtry = 5 hoặc 6 thường cho R²_test cao nhất và RMSE thấp nhất. 

Cụ thể, cấu hình 1500 cây với mtry = 6 đạt R²_test = 0,632 (cao nhất trong toàn bộ 
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các tổ hợp), đồng thời RMSE_test = 0,871 và MAE_test = 0,596 – đây cũng là một 

trong những trường hợp có sai số thấp nhất. Cấu hình 1000 cây với mtry = 5 và 2000 

cây với mtry = 6 cũng có hiệu năng tương đương, nhưng mức cải thiện không vượt 

trội hơn so với ntree = 1500. 

Tổng hợp các chỉ số đánh giá, cấu hình của mô hình RF với ntree = 1500 và 

mtry = 6 được xem là mô hình tối ưu cho dữ liệu các biến được chọn lọc, với R²_test 

cao nhất (0,632), sai số thấp và mô hình ổn định. Cấu hình này được lựa chọn cho 

các bước phân tích tiếp theo nhằm đảm bảo độ chính xác và tính khái quát hóa của 

mô hình ước lượng AGB cho RTX của khu vực nghiên cứu. 

3.3.3.3. So sánh hiệu suất mô hình RF toàn bộ biến và biến chọn lọc  

Kết quả chỉ số thống kê của các mô hình RF cho toàn bộ biến và các biến 

chọn lọc (Bảng 3.10) cho thấy, mặc dù giá trị R²_train của hai phương án tương đương 

nhau (0,882), mô hình chọn lọc cho R²_test cao hơn +0,211, đồng thời giảm sai số 

RMSE_test và MAE_test khoảng 16,7-17,6% so với mô hình toàn biến. Cụ thể, 

R²_train đạt 0,882 và R²_test (OOB) đạt 0,606 – cao hơn rõ rệt so với mô hình toàn 

biến (R²_test = 0,395). Các chỉ tiêu sai số cũng cải thiện tương ứng (RMSE_test = 

0,894; MAE_test = 0,614) so với mô hình toàn biến (RMSE_test = 1,073; MAE_test 

= 0,745). Kết quả cho thấy việc giảm số lượng biến đầu vào đã cải thiện đáng kể khả 

năng khái quát hóa của mô hình RF.   

Bảng 3.10. So sánh hiệu suất của mô hình RF dựa trên 2 bộ dữ liệu khác nhau  

Mô hình R²_train R²_test RMSE_

train 

RMSE_t

est 

MAE_tr

ain 

MAE_tes

t 

All_var. 0,882 0,395 0,423 1,073 0,295 0,745 

Selected (VH) 0,884 0,632 0,401 0,871 0,295 0,596 

Kết quả phân tích cho thấy, mô hình RF–Selected (VH) với số lượng ntree = 

1500 và mtry = 6 không chỉ duy trì được độ phù hợp cao trên tập huấn luyện mà còn 

cải thiện rõ rệt khả năng tổng quát hóa so với mô hình toàn biến, nhờ loại bỏ các biến 

dư thừa và giảm hiện tượng quá khớp. Mô hình này đạt cân bằng tốt giữa độ chính 

xác, tính ổn định và cấu trúc đơn giản, do đó được lựa chọn là mô hình tối ưu để ước 



102 

 

 

 

lượng và lập bản đồ AGB rừng thường xanh của tỉnh Đắk Lắk. 

So với mô hình RF toàn bộ biến, mô hình chỉ sử dụng các biến chọn lọc đạt 

hiệu quả tương đương thậm chí tốt hơn. Điều này khẳng định việc lựa chọn biến qua 

các bước kiểm định tương quan, PCA và VIF là hợp lý, giúp mô hình giảm độ phức 

tạp nhưng vẫn giữ được độ chính xác cao hơn.  

Kết quả này phù hợp với xu hướng chung của các nghiên cứu trước đây khi 

sử dụng RF để ước tính sinh khối rừng. Chẳng hạn, Đặng Thị Ngọc An và cộng sự 

(2019) khi áp dụng Sentinel-2 và RF tại Vườn quốc gia Yok Đôn, Việt Nam, đã đạt 

R² = 0,81 và RMSE = 36,67 tấn/ha, khẳng định khả năng của RF trong việc tận dụng 

cả biến phổ và biến kết cấu để mô hình hóa AGB hiệu quả. Tương tự, Han và cộng 

sự (2022) khi kết hợp Gaofen-1 và Sentinel-1 cũng ghi nhận mô hình RF cho kết quả 

ước lượng tốt nhất với R² = 0,7 và RMSE= 16,26 tấn/ha, thấp hơn đáng kể so với 

nghiên cứu này, cho thấy dữ liệu quang học độ phân giải cao kết hợp tiền xử lý phù 

hợp có thể cải thiện kết quả ước tính. 

Trong nghiên cứu của Talebiesfandarani & Shamsoddini (2022), việc áp dụng 

RF và SVR cho ước tính sinh khối toàn cầu cũng cho thấy RF duy trì hiệu năng tốt 

và ổn định hơn so với các thuật toán phi tuyến khác, dù có xu hướng ước lượng thấp 

ở khu vực sinh khối cao và ước lượng cao ở khu vực sinh khối thấp. Hiện tượng này 

ít xuất hiện trong kết quả hiện tại nhờ áp dụng phép biến đổi lô-ga-rít cho AGB, giúp 

giảm phương sai và ổn định mô hình. 

Các nghiên cứu ở Iran (Gholizadeh và cộng sự, 2020) và Nepal (Kandel và 

cộng sự, 2021) cũng cho thấy RF thường vượt trội hơn các mô hình tuyến tính (MLR) 

và SVM trong ước tính sinh khối rừng, với R² dao động từ 0,69 đến 0,87, tương tự 

mức đạt được trong nghiên cứu này. RF đặc biệt hiệu quả khi làm việc với bộ dữ liệu 

đa nguồn (quang học + ra-đa + địa hình) và trong các hệ sinh thái có tính dị thể cao, 

như rừng nhiệt đới lá rộng thường xanh hoặc rừng phục hồi sau suy thoái. 

Việc rút gọn biến trong mô hình RF mà không làm giảm đáng kể độ chính 
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xác cũng được ghi nhận trong các nghiên cứu gần đây, chẳng hạn Đặng Thị Ngọc An 

và cộng sự (2019) chỉ sử dụng 11 biến quan trọng thay vì 132 biến ban đầu mà vẫn 

giữ R² > 0,8. Điều này cho thấy lựa chọn biến tối ưu (thông qua đánh giá tầm quan 

trọng biến) có vai trò quan trọng trong việc đơn giản hóa mô hình và giảm hiện tượng 

đa cộng tuyến, đồng thời tăng khả năng ứng dụng thực tiễn khi triển khai trên diện 

rộng. 

Như vậy, kết quả của nghiên cứu này không chỉ củng cố hiệu quả của thuật 

toán RF trong ước tính sinh khối rừng bằng dữ liệu viễn thám, mà còn chỉ ra rằng một 

tập hợp biến nhỏ, được chọn lọc kỹ lưỡng (như elevation, B7, MSI, NDWI, VH, 

slope) có thể mang lại hiệu suất tương đương với mô hình sử dụng toàn bộ biến. Đây 

là cơ sở khoa học quan trọng để phát triển các mô hình RF gọn nhẹ, hiệu quả và có 

tính tổng quát cao, phục vụ cho giám sát sinh khối và các-bon rừng ở quy mô cảnh 

quan. 

3.3.4. Đánh giá độ chính xác của các mô hình ước lượng 

3.3.4.1. Kiểm định bằng các thông số nội bộ của mô hình 

Đánh giá nội bộ mô hình được thực hiện dựa trên ba chỉ số thống kê chính 

gồm R², RMSE và MAE, nhằm phản ánh đồng thời mức độ giải thích phương sai, sai 

số bình phương trung bình và sai số tuyệt đối trung bình trong dự báo AGB. Kết quả 

tổng hợp cho ba mô hình OLS, GAM và Random Forest được trình bày tại Bảng 3.11. 

Bảng 3.11. Hiệu suất mô hình trên tập huấn luyện 

Mô hình RMSE MAE R² 

OLS 0,824 0,6194 0,510 

GAM 0,750 0,5340 0,590 

RF 0,401 0,2950 0,884 

Mô hình OLS cho kết quả RMSE = 0,824, MAE = 0,6194 và R² = 0,51, phản 

ánh mức độ mô phỏng chỉ ở mức trung bình. Sai số RMSE và MAE đều khá cao, cho 

thấy mô hình gặp hạn chế trong việc nắm bắt biến động thực của AGB, đặc biệt do 

giả định tuyến tính giữa các biến viễn thám và sinh khối rừng. Điều này phù hợp với 

bản chất phi tuyến đặc trưng của tín hiệu quang học và radar đối với cấu trúc tán rừng, 
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khiến OLS khó mô phỏng chính xác các vùng sinh khối thấp–cao. 

Mô hình GAM cải thiện hiệu suất với RMSE = 0,750, MAE = 0,534 và R² = 

0,59, cho thấy khả năng mô phỏng tốt hơn so với OLS. Điều này xuất phát từ việc 

GAM sử dụng các hàm trơn (spline) cho phép mô tả các quan hệ phi tuyến một biến 

giữa AGB và các chỉ số phổ – radar – địa hình. Tuy nhiên, mức cải thiện vẫn còn hạn 

chế vì GAM khó nắm bắt các tương tác đa biến phức hợp, vốn rất đặc trưng trong 

mối quan hệ giữa sinh khối và đặc trưng ảnh viễn thám. 

Mô hình Random Forest đạt hiệu suất vượt trội với RMSE = 0,401, MAE = 

0,295 và R² = 0,884, cao nhất trong ba phương pháp. Điều này chứng tỏ RF có khả 

năng xử lý tốt dữ liệu dị thể và cấu trúc phi tuyến cao, nhờ cơ chế kết hợp nhiều cây 

quyết định và đánh giá tương tác biến trên nhiều mức độ. Mô hình mô phỏng tốt cả 

hai vùng sinh khối thấp và cao, hạn chế đáng kể sai số hệ thống và giảm hiện tượng 

bão hòa tín hiệu – vốn là hạn chế thường gặp trong dữ liệu quang học ở rừng nhiệt 

đới. 

So sánh ba mô hình cho thấy: 

- OLS có độ chính xác thấp nhất do giả định tuyến tính và không xử lý được 

quan hệ phi tuyến giữa AGB và các biến giải đoán. 

- GAM cải thiện độ chính xác nhờ mô tả phi tuyến đơn biến nhưng vẫn thiếu 

khả năng mô phỏng tương tác đa chiều. 

- Random Forest cho kết quả tốt nhất với RMSE và MAE thấp nhất, R² cao 

nhất, phản ánh khả năng mô phỏng tối ưu trong điều kiện dữ liệu phức tạp 

của rừng thường xanh Đắk Lắk. 

Đồ thị so sánh logAGB thực tế và logAGB ước tính (Hình 3.18) cho thấy mức 

bám sát đường chéo của RF cao hơn rõ rệt so với hai mô hình còn lại, minh chứng 

trực quan cho hiệu suất vượt trội được thể hiện ở các chỉ số thống kê. Điều này là cơ 

sở để lựa chọn RF làm mô hình tối ưu cho bước ước tính không gian AGB và CO₂ 

trong các phần tiếp theo. 
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Hình 3.18. Mức độ phù hợp giữa dữ liệu thực tế và ước tính từ các mô hình 

Những kết quả trên là cơ sở để tiếp tục đánh giá chi tiết hơn bằng phương 

pháp kiểm định chéo phân tầng Stratified k-fold và dữ liệu độc lập nhằm kiểm tra tính 

ổn định, khả năng khái quát hóa và mức độ tin cậy của từng mô hình. 

3.3.4.2. Kiểm định chéo Stratified k-fold 

Để đánh giá độ chính xác và khả năng khái quát hóa của các mô hình ước 

lượng sinh khối rừng, nghiên cứu áp dụng phương pháp kiểm định chéo phân tầng k-

fold cho cả ba mô hình OLS, GAM và RF. Toàn bộ 70 ô mẫu được chia ngẫu nhiên 

thành các nhóm (folds) có kích thước tương đương, với hai kịch bản kiểm định phổ 

biến là k = 5 và k = 10. Chỉ tiêu được sử dụng để đánh giá gồm R2, RMSE và MAE 

(Bảng 3.12). 

Bảng 3.12. Kết quả kiểm định các mô hình hồi quy bằng cross validation 

Mô hình k R²  RMSE MAE 

OLS 5 0,475 0,896 0,669 

OLS 10 0,480 0,878 0,709 

GAM 5 0,491 0,845 0,646 

GAM 10 0,515 0,817 0,639 

RF 5 0,515 0,881 0,651 

RF 10 0,550 0,818 0,637 
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Kết quả cho thấy rằng khi tăng số lần chia dữ liệu từ k = 5 lên k = 10, tất cả 

các mô hình đều có cải thiện nhẹ về độ chính xác – thể hiện qua việc giảm RMSE và 

tăng R². Tuy nhiên, mức cải thiện rõ rệt nhất được ghi nhận ở mô hình RF, trong khi 

OLS và GAM chỉ có cải thiện nhỏ hoặc không đáng kể. Biểu đồ so sánh hiệu suất mô 

hình kiểm định theo k-fold (Hình 3.19) cho thấy: 

Mô hình OLS: OLS cho kết quả trung bình với R² tăng rất ít từ R2 = 0,475 với 

k=5 lên R2= 0,480 với k=10; RMSE giảm từ 0,896 với k=5 xuống còn 0,878 với k=10; 

tuy nhiên sai số trung binh tuyệt đối MAE tăng từ 0,669, lên 0,709. Điều này phản 

ánh giới hạn của mô hình tuyến tính cổ điển trong việc mô phỏng mối quan hệ phi 

tuyến giữa sinh khối rừng và các biến viễn thám (như B7, NDWI, MSI), vốn có tính 

chất phi tuyến hoặc bão hòa tín hiệu quang học ở sinh khối cao. 

Mô hình GAM: GAM thể hiện hiệu suất tốt hơn OLS, với R² cao hơn mô hình 

OLS và R2 cũng tăng khi tăng số k tương ứng với R2=0,491 và 0,515; RMSE giảm so 

với mô hình OLS và có xu hướng giảm khi tăng số k  với giá trị RMSE là 0,845 và 

0,817; sai số MAE cũng giảm đáng kể so với OLS với giá trị tương ứng với k lần lượt 

là 0,646 và 0,639. Mô hình này cho phép mô phỏng các quan hệ phi tuyến mềm giữa 

logAGB và các biến giải thích thông qua hàm spline, giúp phản ánh chính xác hơn 

xu hướng biến thiên sinh khối. Tuy nhiên, độ chính xác vẫn chưa đạt mức cao do 

GAM vẫn chịu ảnh hưởng của hiện tượng bão hòa phổ và nhiễu không gian trong dữ 

liệu viễn thám. 

Mô hình RF: RF thể hiện hiệu suất vượt trội so với hai mô hình còn lại. đặc 

biệt ở k = 10 (R² = 0,551), đồng thời có RMSE và MAE thấp nhất lần lượt là 0,818 

và 0,637. Điều này khẳng định ưu thế của RF khi xử lý dữ liệu có tính dị thể cao và 

mối quan hệ phi tuyến đa chiều. Kết quả này chứng minh năng lực mô hình hóa phi 

tuyến và tương tác đa biến mạnh mẽ của RF, nhờ việc sử dụng tập hợp nhiều cây 

quyết định và cơ chế lấy mẫu bootstrap. Như vậy, RF tiếp tục là mô hình có hiệu suất 

cao nhất khi đánh giá bằng kiểm định chéo, phù hợp với kết quả đánh giá nội bộ. 
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Hình 3.19. So sánh hiệu suất mô hình RF bằng kiểm định chéo k-fold 

Khi tăng số fold từ k = 5 lên k = 10 trong thiết lập chia mẫu ngẫu nhiên phân 

tầng, hiệu suất mô hình có xu hướng được cải thiện: RMSE và MAE giảm ở cả GAM 

và RF (ngoại trừ MAE của OLS tăng nhẹ). Giá trị R² tăng rõ rệt, đặc biệt đối với RF, 

từ 0,515 (k = 5) lên 0,551 (k = 10). Điều này là do khi k lớn hơn, tỷ lệ dữ liệu dùng 

cho huấn luyện tăng (từ 80% lên 90%), và nhờ cơ chế phân tầng theo logAGB, mỗi 

tập huấn luyện – kiểm định vẫn giữ được sự đại diện của các mức sinh khối. Vì vậy 

mô hình, đặc biệt là RF, khai thác tốt hơn các quan hệ phi tuyến và giảm sai lệch do 

chia mẫu. 

Đồ thị (Hình 3.19) cho thấy: OLS đạt hiệu quả thấp nhất trong ba mô hình. 

Mức R² thấp (~0,48) và giá trị RMSE cao (~0,88–0,89) cho thấy mô hình tuyến tính 

không phù hợp để mô tả cấu trúc phức tạp của sinh khối rừng nhiệt đới, vốn chịu chi 

phối mạnh bởi các quan hệ phi tuyến giữa đặc trưng phổ – cấu trúc tán – địa hình. 

Mô hình GAM thể hiện mức cải thiện đáng kể so với OLS, đặc biệt ở k = 10 với R² = 

0.5149. Điều này cho thấy các hàm trơn đã mô phỏng tốt hơn sự biến đổi phi tuyến 

của AGB theo các biến giải đoán, nhưng vẫn chưa đủ mạnh để mô phỏng tương tác 

đa biến. RF vượt trội nhất trong cả hai cấu hình k, với: R² cao nhất (0,55), RMSE thấp 
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nhất (~0,818), MAE thấp nhất (~0,637). Điều này chứng minh ưu thế của RF khi mô 

hình hóa mối quan hệ phi tuyến phức tạp và tương tác giữa nhiều biến viễn thám đồng 

thời. Đặc biệt, sự ổn định giữa hai cấu hình k cho thấy RF có tính nhất quán cao. 

Kết quả xếp hạng hiệu quả mô hình (RF > GAM > OLS) phản ánh xu hướng 

thường thấy trong nghiên cứu viễn thám sinh khối: các mô hình dựa vào tổ hợp cây 

quyết định, đặc biệt RF, thường vượt trội về độ chính xác và tính ổn định khi xử lý 

dữ liệu viễn thám đa nguồn có tính phi tuyến và dị hướng cao. RF có khả năng chịu 

được dữ liệu có chiều cao, đa cộng tuyến giữa biến, nhiễu phổ và hiệu ứng địa hình 

nhờ cơ chế lấy mẫu bootstrap và chọn ngẫu nhiên biến đầu vào cho từng cây con, từ 

đó giảm overfitting và mô phỏng tốt các tương tác phi tuyến phức tạp giữa biến quang 

học và ra-đa (Belgiu & Drăguț, 2016). Nhiều nghiên cứu so sánh thuật toán cũng cho 

thấy RF thường đạt R² và độ chính xác cao hơn các mô hình tham số như OLS và đôi 

khi vượt hoặc tương đương với các phương pháp bán/phi tham số như GAM, đặc biệt 

khi dữ liệu có tính dị hướng không tuyến tính (Huang, 2023). Các phân tích so sánh 

giữa ba nhóm mô hình - tham số (parametric), bán tham số (semiparametric) và phi 

tham số (nonparametric) - trong ước tính sinh khối trên mặt đất cho thấy rằng các 

phương pháp phi tham số, đặc biệt là các mô hình dựa trên cây quyết định như RF, 

thường cho kết quả sai số thấp hơn so với mô hình hồi quy tuyến tính thông thường 

(OLS) trong các khu rừng có cấu trúc phức tạp và đa dạng. Ngoài ra, RF còn có ưu 

thế trong việc khai thác và mô tả mối quan hệ tương tác phi tuyến giữa nhiều nguồn 

dữ liệu khác nhau (Sohrabi và cộng sự, 2018). Do đó, lựa chọn RF làm mô hình chính 

cho ước lượng sinh khối trong khu vực nghiên cứu là phù hợp về mặt thực nghiệm và 

lý thuyết. 

3.3.4.3. Kiểm định mô hình RF bằng dữ liệu độc lập 

Để đánh giá khả năng tổng quát hóa theo thời gian (temporal transferability) 

của mô hình, nghiên cứu áp dụng mô hình Random Forest đã huấn luyện giai đoạn 

2020–2024 cho bộ dữ liệu độc lập của năm 2013. Tập dữ liệu này khác biệt về điều 

kiện cảm biến (chỉ có dữ liệu Landsat, thiếu dữ liệu Sentinel-1), đặc tính phổ và trạng 
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thái rừng, qua đó phản ánh mức độ ổn định của mô hình khi áp dụng ngoài thời kỳ 

huấn luyện.  

Kết quả cho thấy mô hình có giá trị R² chỉ đạt 13,2%, phản ánh mô hình chỉ 

giải thích được một phần nhỏ biến thiên của log(AGB) trong năm 2013 (Hình 3.20). 

Điều này cho thấy mức suy giảm lớn về hiệu suất so với giai đoạn huấn luyện 

(R²_train = 0,884). Đồng thời, các giá trị RMSE = 1,304 và MAE = 1,087 cao hơn 

mô hình huấn luyện cho thấy sai số dự báo tăng đáng kể khi áp dụng mô hình cho dữ 

liệu ngoài mẫu. 

 

Hình 3.20. Đồ thị tương quan AGB ước lượng và thực tế (độc lập) 

Hệ số Slope = 0,491 cho thấy mô hình bị nén giá trị ước lượng - hiện tượng 

underestimation tại vùng sinh khối cao và overestimation ở vùng thấp, phản ánh ảnh 

hưởng của bảo hòa tín hiệu quang học khi không có dữ liệu ra-đa hỗ trợ. Kết quả này 

phù hợp với các nghiên cứu trước (Avitabile và cộng sự, 2016; Chen và cộng sự, 

2023; Ludwig và cộng sự, 2023), vốn chỉ ra rằng mô hình được huấn luyện tại một 

thời kỳ thường suy giảm độ chính xác khi áp dụng cho giai đoạn khác, do khác biệt 

về đặc điểm phổ, cảm biến và cấu trúc rừng. Dù vậy, mô hình RF vẫn thể hiện giá trị 

khoa học và thực tiễn, khi duy trì được xu hướng tổng thể của biến thiên sinh khối 
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rừng, qua đó chứng minh tính khả dụng cho ước lượng không gian – thời gian ở quy 

mô cấp tỉnh. 

3.4. Lập bản đồ AGB rừng và khả năng hấp thụ CO2 giai đoạn 2015 – 2025 

3.4.1. Xây dựng bản đồ AGB giai đoạn 2015 - 2025 

Dựa trên mô hình RF đã được huấn luyện và kiểm định bằng dữ liệu sử dụng 

nhóm biến quan trọng đã được lựa chọn (B7, NDWI, MSI, VH, elevation, slope) như 

đã phân tích ở phần trên, nghiên cứu tiến hành ước lượng và lập bản đồ phân bố không 

gian sinh khối trên mặt đất của RTX tỉnh Đắk Lắk giai đoạn 2015 - 2025. 

Việc chỉ giới hạn phân tích cho giai đoạn này nhằm đảm bảo tính nhất quán 

của biến đầu vào, do dữ liệu ra-đa thu thập từ ảnh Sentinel-1 là một trong các biến 

quan trọng phản ánh cấu trúc tán rừng chỉ có sẵn từ năm 2015 trở lại đây. 

Để nâng cao độ tin cậy, việc ước lượng tập trung vào các huyện có diện tích 

RTX lớn như Lắk, Krông Bông, M’Đrắk, Ea Kar và Krông Năng để tránh nhiễu dữ 

liệu từ các kiểu rừng và che phủ thực vật khác trong tỉnh. 

Cách tiếp cận này không chỉ góp phần làm rõ động thái sinh khối rừng dưới 

tác động của các hoạt động quản lý, bảo vệ và phục hồi rừng, mà còn cung cấp cơ sở 

khoa học cho giám sát phát thải và báo cáo REDD⁺ ở cấp tỉnh. 

Bản đồ AGB của RTX các năm 2015, 2020 và 2025 (Hình 3.21) cho thấy 

phân bố sinh khối trên mặt đất tại tỉnh Đắk Lắk có xu hướng tương đối ổn định về 

không gian. Nhìn chung, các khu vực có AGB cao vẫn tập trung chủ yếu ở phía Nam 

và Đông Nam tỉnh (huyện Lắk và Krông Bông), nơi có diện tích rừng tự nhiên liên 

tục và điều kiện sinh thái thuận lợi. Các dãy núi và khu vực có địa hình cao cũng duy 

trì giá trị sinh khối lớn, phản ánh sự tồn tại của các quần thể rừng ít bị tác động mạnh. 

Ngược lại, các khu vực phía Bắc và Đông Bắc (Ea Kar, Krông Năng, M’đrắk) thể 

hiện AGB thấp hơn, với phân bố loang lỗ và rời rạc, chủ yếu do chịu ảnh hưởng của 

quá trình khai thác gỗ trái trước đây, nương rẫy và chuyển đổi mục đích sử dụng đất. 

Các vùng ven đô thị và khu dân cư nhìn chung cũng có giá trị sinh khối thấp, phù hợp 
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với thực tế suy giảm diện tích rừng tự nhiên. 

 
a) 2015 

 
b) 2020 

 
c) 2025 

Hình 3.21. Phân bố sinh khối rừng qua các giai đoạn 

Tóm lại, trong suốt giai đoạn 2015–2025, bản đồ AGB cho thấy phân bố AGB 

tương đối đồng nhất giữa các năm, với sự phân hóa rõ rệt giữa các khu vực rừng giàu 

ở phía Nam và rừng suy giảm ở phía Bắc – Đông Bắc. Điều này cho phép khẳng định 

đặc trưng không gian của sinh khối RTX tại Đắk Lắk ít thay đổi, mặc dù có sự biến 

động về giá trị cụ thể qua các giai đoạn. 

Mặc dù bản đồ AGB các năm thể hiện sự phân bố không gian tương đối tương 

đồng, song giá trị sinh khối rừng vẫn có sự biến động nhất định theo thời gian. Những 

biến động này phản ánh tác động tổng hợp của khai thác rừng trái phép, mở rộng diện 

tích canh tác nông nghiệp, quá trình phục hồi rừng tự nhiên, cũng như các hoạt động 

quản lý và bảo vệ rừng trong từng giai đoạn. Do vậy, việc phân tích sự thay đổi AGB 
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theo không gian và thời gian sẽ cung cấp những bằng chứng khoa học quan trọng, 

góp phần đánh giá hiệu quả quản lý rừng và định hướng chính sách phát triển lâm 

nghiệp bền vững. 

3.4.2. Phân tích biến động AGB giai đoạn 2015 - 2025 

Để phân tích biến động AGB, ngưỡng thay đổi có thể phát hiện tối thiểu 

(MDC) được xác định dựa trên sai số chuẩn của các mô hình ước tính sinh khối năm 

2013 và 2024. Với RMSE lần lượt là 1,6787 và 0,4135, số lượng điểm kiểm định n = 

70, và mức ý nghĩa α = 0,05 (z = 1,96), giá trị MDC được tính là 0,405. 

Điều này có nghĩa là chỉ những thay đổi logAGB lớn hơn 0,405 (tương ứng 2,5 tấn 

AGB/ha) mới có thể được coi là có ý nghĩa thống kê, vượt quá mức sai số của mô 

hình ước lượng. 

Kết quả phân tích biến động AGB ( 

 

 

 

 

 

 

 

 

Hình 3.22) cho thấy xu hướng thay đổi rõ rệt về không gian và thời gian trong 

giai đoạn 2015–2025. Nhìn chung, AGB có xu hướng suy giảm ở nhiều khu vực, đặc 

biệt tập trung ở các huyện M’Đrắk, Ea Kar và một phần Krông Bông, nơi chịu tác 

động mạnh của khai thác gỗ trái phép và chuyển đổi mục đích sử dụng đất. Các vùng 

màu đỏ và cam trên bản đồ thể hiện sự suy giảm mạnh về sinh khối, quá trình mất 

rừng và suy thoái do mở rộng nông nghiệp.
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Hình 3.22. Bản đồ biến động AGB giai đoạn 2015 – 2025
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Ngược lại, các khu vực có màu xanh lá cây đậm cho thấy sự gia tăng sinh 

khối, chủ yếu phân bố tại một số vùng thuộc huyện Lắk và Krông Bông, nơi có điều 

kiện thuận lợi cho tái sinh rừng tự nhiên và trồng rừng, nhờ các chương trình khoanh 

nuôi phục hồi và chi trả dịch vụ môi trường rừng. 

Tổng thể, các bản đồ phân loại biến động AGB cho thấy sinh khối rừng tỉnh 

Đắk Lắk trong giai đoạn 2015–2025 có sự đan xen giữa các khu vực suy giảm và 

phục hồi, song xu thế suy giảm vẫn chiếm ưu thế về không gian. Các vùng giảm AGB 

phân bố rộng và liên tục hơn so với các vùng tăng AGB, phản ánh áp lực kéo dài của 

khai thác cây gỗ trái phép, chuyển đổi mục đích sử dụng đất và suy thoái rừng, đồng 

thời cho thấy các nỗ lực phục hồi rừng chưa đủ mạnh để bù đắp mức suy giảm tổng 

thể. 

Xét theo từng giai đoạn, giai đoạn 2015–2020 (Hình 3.23a) cho thấy các khu 

vực giảm AGB chiếm tỷ lệ lớn, tập trung rõ rệt ở khu vực phía Đông và Nam tỉnh, 

đặc biệt dọc theo ranh giới các huyện Lắk và Krông Bông. Đây là những khu vực 

chịu tác động mạnh của hoạt động canh tác nông nghiệp và khai thác tài nguyên rừng. 

Ngược lại, các điểm tăng AGB xuất hiện rải rác ở các khu vực rừng thuộc huyện 

Krông Bông và M'Đrắk, nơi xa khu dân cư, khó tiếp cận. 

Trong giai đoạn 2020–2025 (Hình 3.23b), phân bố biến động AGB có xu 

hướng phân tán hơn. Diện tích tăng AGB gia tăng tại một số khu vực rừng sâu, ít chịu 

tác động của con người, đặc biệt ở phía Nam tỉnh như Krông Bông và Lắk. Tuy nhiên, 

các vùng giảm AGB vẫn xuất hiện với mật độ cao tại phía Đông huyện Krông Bông 

và các huyện Ea Kar và M’Đrắk, cho thấy áp lực suy thoái rừng tại các khu vực này 

chưa được kiểm soát hiệu quả dù đã có sự cải thiện cục bộ ở một số nơi. 

Tổng hợp toàn bộ giai đoạn 2015–2025 (Hình 3.23c), bản đồ biến động AGB 

cho thấy xu thế suy giảm sinh khối rừng vẫn là chủ đạo, tập trung nhiều ở các huyện 

phía Đông và phía Nam tỉnh (Ea Kar, M’Đrắk, Krông Bông và Lắk). Trong khi đó, 

các khu vực có xu hướng tăng AGB phân bố rải rác ở các khu vực thuộc rừng đặc 
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dụng ở các huyện Lắk, Krông Bông. Kết quả này phản ánh rằng trong vòng một thập 

kỷ qua, quá trình suy thoái rừng diễn ra liên tục, còn các hoạt động phục hồi và tái 

sinh rừng mới chỉ mang tính cục bộ, chưa tạo ra sự chuyển biến rõ rệt về sinh khối 

rừng ở quy mô toàn tỉnh. 

 
a) 

 
b) 

 
c) 

Hình 3.23. Bản đồ phân loại biến động AGB rừng tỉnh Đắk Lắk các giai đoạn 

a) 2015–2020; b) 2020–2025; c) 2015–2025. 

Kết quả phân tích biến động AGB kiểu rừng thường xanh tỉnh Đắk Lắk giai 

đoạn 2015–2025 cho thấy xu thế suy giảm sinh khối chiếm ưu thế, diễn ra liên tục và 

với cường độ khác nhau ở các giai đoạn. Các điểm tăng AGB chỉ xuất hiện cục bộ tại 

những khu vực rừng sâu, xa dân cư hoặc nơi có hoạt động trồng rừng và tái sinh tự 

nhiên, trong khi phần lớn diện tích rừng, đặc biệt ở các huyện Ea Kar, M’Đrắk, Krông 

Bông và Lắk, vẫn ghi nhận suy giảm về sinh khối. Điều này phản ánh thực trạng áp 

lực lớn từ chuyển đổi mục đích sử dụng đất, khai thác gỗ và nông nghiệp. Nếu không 
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có các biện pháp quản lý và phục hồi kịp thời, nguồn dự trữ các-bon của rừng sẽ tiếp 

tục suy giảm, làm gia tăng rủi ro về biến đổi khí hậu và mất cân bằng sinh thái. 

Kết quả phân tích định lượng sự thay đổi sinh khối RTX giai đoạn 2015–2025 

(Bảng 3.13) cho thấy xu thế vừa tích lũy vừa suy giảm, song tổng thể toàn tỉnh vẫn bị 

thâm hụt nhẹ. Cụ thể, tổng lượng sinh khối bị suy giảm trong giai đoạn nghiên cứu ước 

tính 1,45 triệu tấn, trong khi lượng tăng chỉ đạt 1,18 triệu tấn, dẫn đến mức suy giảm 

ròng 265,04 nghìn tấn AGB. Các khu vực ghi nhận suy giảm mạnh tập trung ở huyện 

M’Đrắk, Krông Bông, Lắk và Ea Kar, phản ánh quá trình khai thác gỗ trái phép, chuyển 

đổi sử dụng đất và suy thoái rừng tự nhiên. Các điểm tăng sinh khối rõ rệt tập trung tại 

huyện Krông Bông, Lắk và Ea Kar, nơi các hoạt động quản lý bảo vệ rừng và phục hồi 

rừng diễn ra tích cực ở các khu rừng đặc dụng và các chủ rừng. Kết quả này phản ánh 

sự mất cân bằng giữa quá trình suy thoái và phục hồi rừng, cho thấy mặc dù một số 

huyện (như Lắk và Krông Bông có xu hướng tích cực, song chưa đủ để bù đắp tình 

trạng suy thoái mạnh tại các huyện khác, đặc biệt là M’Đrắk và Ea Kar. 

Bảng 3.13. Kết quả phân tích định lượng thay đổi sinh khối RTX tỉnh Đắk Lắk 

giai đoạn 2015–2025 

Chỉ tiêu 
Giảm AGB 

(tấn) 
Tăng AGB (tấn) 

Giá trị nhỏ nhất (tấn/ha) 0,00 1,00 

Giá trị lớn nhất (tấn/ha) -175,99 136,81 

Khoảng biến động (tấn/ha) 175,98 135,81 

Tổng lượng (tấn) 1.448.379,41 1.183.339,32 

Giá trị trung bình (tấn/ha) 7,42 14,33 

Độ lệch chuẩn 12,86 14,93 

Cân đối (tấn) - -265.040,09 

Kết quả phân tích thay đổi sinh khối giai đoạn 2015–2025 theo từng huyện 

(Bảng 3.14) cho thấy sự khác biệt rõ rệt về mức độ suy giảm và phục hồi sinh khối 

rừng trong tỉnh Đắk Lắk. Huyện Krông Bông là khu vực có mức suy giảm sinh khối 

lớn nhất, với tổng lượng AGB giảm đạt 609,38 nghìn tấn, trong khi lượng AGB tăng 

chỉ đạt 398,16 nghìn tấn, dẫn đến mức thâm hụt ròng cao nhất toàn tỉnh (−211,21 

nghìn tấn). Tương tự, huyện Lắk cũng ghi nhận xu thế suy giảm chiếm ưu thế, với 

lượng AGB giảm 489,45 nghìn tấn, vượt quá mức tăng 410,67 nghìn tấn, làm cho cân 
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đối sinh khối rừng âm 78,78 nghìn tấn. 

Huyện M’Đrắk có mức suy giảm sinh khối tương đối lớn (260,15 nghìn tấn), 

song đồng thời cũng ghi nhận lượng AGB tăng đáng kể (252,78 nghìn tấn), do đó 

mức suy giảm ròng chỉ còn 7,38 nghìn tấn, cho thấy sự bù đắp tương đối giữa mất 

rừng và phục hồi rừng trong giai đoạn nghiên cứu. Ngược lại, hai huyện Krông Năng 

và Ea Kar thể hiện xu thế tích cực, với lượng AGB tăng vượt quá lượng giảm, tương 

ứng đạt cân đối sinh khối dương lần lượt là 22,32 nghìn tấn và 10,02 nghìn tấn. Kết 

quả này phản ánh quá trình phục hồi sinh khối rừng diễn ra rõ rệt hơn tại hai địa 

phương này so với các khu vực còn lại trong tỉnh.. 

Bảng 3.14. Kết quả phân tích định lượng thay đổi sinh khối RTX theo huyện, 

giai đoạn 2015–2025 (tấn AGB) 

Tên huyện AGB giảm (tấn) AGB tăng (tấn) Cân đối 

Ea Kar -65.698,75   75.714,18   10.015,43  

Krông Bông -609.377,52   398.164,82  -211.212,70  

Krông Năng -23.697,75   46.015,53   22.317,78  

Lắk -489.453,63   410.669,59  -78.784,04  

M'Đrắk -260.151,75   252.775,20  -7.376,55  

Tổng  -1.448.379,40 1.183.339,32 -265.040,08  

Từ kết quả bảng trên, để trực quan hóa sự khác biệt về mức tăng – giảm sinh 

khối giữa các huyện. Hình 3.24 trình bày biểu đồ thay đổi AGB giai đoạn 2015–2025. 

Biểu đồ cho thấy rõ ràng sự đối lập: trong khi Lắk và Krông Năng có xu hướng tích 

lũy sinh khối, thì M’Đrắk và Krông Bông lại có xu hướng suy giảm đáng kể. Điều 

này phản ánh sự khác biệt trong quản lý, áp lực sử dụng đất và khả năng phục hồi 

rừng giữa các địa phương trong tỉnh. 
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Hình 3.24. Biểu đồ thay đổi AGB theo huyện giai đoạn 2015-2025 

Nhìn chung, kết quả phân tích biến động sinh khối RTX giai đoạn 2015–2025 

cho thấy xu hướng suy giảm chiếm ưu thế so với tích lũy, với tổng lượng sinh khối 

giảm nhiều hơn 265,04 nghìn tấn so với lượng tăng. Tuy nhiên, sự thay đổi này không 

đồng đều giữa các huyện: Lắk và Krông Năng thể hiện khả năng phục hồi và tích lũy 

sinh khối, trong khi M’Đrắk và Krông Bông lại mất mát đáng kể. Những khác biệt 

này phản ánh sự phức tạp trong tác động của hoạt động quản lý rừng, chuyển đổi sử 

dụng đất và áp lực khai thác tài nguyên tại từng địa bàn. 

Tổng sinh khối rừng thường xanh của tỉnh trong giai đoạn 2015–2025 có sự 

dao động đáng kể, phản ánh biến động không ổn định trong trữ lượng sinh khối và 

khả năng hấp thụ các-bon của hệ sinh thái rừng. Đồ thị thay đổi AGB (Hình 3.25) 

cho thấy giá trị AGB tăng nhanh trong giai đoạn 2015–2019, từ 2,72 triệu tấn lên 3,73 

triệu tấn, tương ứng mức tăng khoảng 37,13%, cho thấy giai đoạn này rừng có xu 

hướng phục hồi mạnh mẽ. Sự gia tăng này nhiều khả năng gắn liền với các chương 

trình trồng rừng thay thế và chính sách chi trả dịch vụ môi trường rừng (PFES) được 

triển khai mạnh sau năm 2015, đặc biệt ở các huyện có độ che phủ lớn như Krông 

Bông, Lắk và M’Đrắk. 
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Tuy nhiên, năm 2020, tổng sinh khối giảm đột ngột xuống còn 2,61 triệu tấn, 

giảm hơn 30,03% so với năm 2019. Sau giai đoạn suy giảm mạnh, tổng AGB phục 

hồi trở lại trong các năm 2021–2023, dao động quanh mức 3,52–3,60 triệu tấn, cho 

thấy xu hướng phục hồi sinh khối nhưng không đạt lại ngưỡng cao nhất trước đó. Đến 

năm 2024–2025, tổng AGB tiếp tục giảm xuống còn 2,65 triệu tấn, tương tự mức của 

năm 2015 và 2020, phản ánh xu hướng giảm tích lũy sinh khối tổng thể trong toàn 

giai đoạn (0,07 triệu tấn). 

Về mặt xu thế, nếu xét trung bình, tổng AGB giai đoạn 2015–2025 duy trì ở 

mức khoảng 3,40 triệu tấn, song thể hiện chu kỳ tăng – giảm rõ rệt, đặc trưng cho 

biến động rừng nhiệt đới do chịu tác động kết hợp giữa tự nhiên và nhân sinh. Diễn 

biến này cho thấy, mặc dù có sự phục hồi cục bộ, tổng trữ lượng sinh khối chưa ổn 

định và có xu hướng suy giảm trong giai đoạn gần đây. 

 

Hình 3.25. Tổng sinh khối rừng giai đoạn 2015 – 2025 

Chuỗi biến động này cho thấy: 

- Giai đoạn 2015–2020: sinh khối suy giảm, gắn liền với khai thác bất 

hợp pháp, chuyển đổi mục đích sử dụng đất và suy thoái rừng; 

- Giai đoạn 2020–2025: sinh khối có dấu hiệu phục hồi, nhưng chưa đạt 

mức trước suy giảm. 
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Nhìn chung, mặc dù vẫn tồn tại các khu vực có khả năng phục hồi sinh khối, 

song tổng thể toàn tỉnh Đắk Lắk vẫn đang đối diện xu thế suy giảm nhẹ sinh khối 

rừng, đòi hỏi các giải pháp quản lý bền vững, bảo vệ diện tích rừng hiện có và tăng 

cường phục hồi rừng ở những khu vực trọng điểm suy thoái. 

Do vậy, để xác định liệu các biến động này mang xu thế dài hạn hay chỉ là 

dao động ngắn hạn, cần phân tích xu thế tổng thể bằng kiểm định thống kê Mann-

Kendall kết hợp với ước lượng độ dốc Theil–Sen nhằm đánh giá xu hướng tổng thể 

của AGB trong giai đoạn 2015–2025. 

3.4.3. Kiểm định xu thế AGB giai đoạn 2015-2025 

Để đánh giá sự biến động dài hạn của sinh khối RTX trong giai đoạn 2015–

2025, ngoài việc phân tích bản đồ phân bố và biến động theo từng thời kỳ, nghiên 

cứu sử dụng các kiểm định thống kê nhằm xác định xu thế thay đổi tổng thể. Phương 

pháp kiểm định phi tham số Mann–Kendall kết hợp với ước lượng độ dốc Theil–Sen 

được áp dụng để phát hiện xu hướng tăng hoặc giảm có ý nghĩa thống kê trong chuỗi 

sinh khối. Đây là phương pháp phổ biến trong nghiên cứu thủy văn, khí hậu và tài 

nguyên rừng (Kendall, 1975; Sen, 1968), với ưu điểm không yêu cầu phân phối chuẩn 

và ít bị ảnh hưởng bởi ngoại lai. Các nghiên cứu tiếp theo (Hirsch và cộng sự, 1982; 

Yue và Pilon, 2004) cũng cho thấy MK test đặc biệt phù hợp với chuỗi dữ liệu ngắn 

và có nhiễu – đặc trưng điển hình của sinh khối ước tính từ ảnh viễn thám. 

Song song với kiểm định thống kê, nghiên cứu sử dụng đường làm mượt 

LOESS để mô tả xu thế phi tuyến của tổng sinh khối theo thời gian. LOESS cho phép 

nhận diện tốt các pha tăng – giảm ngắn hạn và thể hiện rõ dạng biến động không đơn 

điệu (non-monotonic), vốn là đặc trưng của rừng nhiệt đới chịu tác động của khai 

thác chọn, cháy rừng, suy thoái cục bộ hoặc phục hồi sau nhiễu loạn (Chave và cộng 

sự, 2008; Mitchard, 2018). Việc kết hợp LOESS và MK tạo cơ sở trực quan và thống 

kê để đánh giá toàn diện xu thế tổng sinh khối RTX. Kết quả tổng hợp thể hiện trong 

Bảng 3.15 và Hình 3.26. 
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Bảng 3.15. Tổng sinh khối RTX giai đoạn 2015-2025 

Năm 
AGB_total 

(triệu tấn) 
Năm 

AGB_total 

(triệu tấn) 

2015 2,72 2021 3,52 

2016 3,47 2022 3,60 

2017 3,67 2023 3,52 

2018 3,67 2024 3,42 

2019 3,73 2025 2,65 

2020 2,61   

 

 

Hình 3.26. Đường LOESS mô tả xu thế phi tuyến của tổng sinh khối RTX giai 

đoạn 2015–2025 

Bảng 3.15 cho thấy tổng sinh khối AGB dao động trong khoảng 29,0–41,4 

triệu tấn. Sinh khối tăng rõ rệt giai đoạn 2015–2019, giảm mạnh vào năm 2020, phục 

hồi trong giai đoạn 2021–2023 và tiếp tục suy giảm vào năm 2024–2025. 

Đường LOESS thể hiện rõ xu thế phi tuyến này: tăng mạnh (2015–2019), 

giảm sâu (2020), phục hồi (2021–2023), sau đó giảm trở lại (2024–2025). Mẫu hình 

tăng–giảm xen kẽ cho thấy sinh khối chủ yếu chịu tác động của các yếu tố ngắn hạn 

như mất rừng cục bộ, khai thác chọn hoặc biến động khí hậu theo mùa. 

Kết quả kiểm định MK và Sen’s slope: Kết quả kiểm định MK đối với tổng 

sinh khối RTX giai đoạn 2015–2025 (Bảng 3.16)  cho thấy hệ số tau = –0,1667 với 
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p = 0,53 (> 0,05), nghĩa là không tồn tại xu thế dài hạn có ý nghĩa thống kê. Giá trị 

Sen’s slope –0,0175 triệu tấn/năm phản ánh xu hướng giảm nhẹ theo thời gian nhưng 

cũng không có ý nghĩa thống kê. Điều này chứng tỏ sự giảm sinh khối không mang 

tính hệ thống mà chủ yếu xuất phát từ các biến động ngắn hạn. 

Kết quả này hoàn toàn phù hợp với dạng xu thế phi tuyến từ đường LOESS: 

chuỗi AGB không tăng hoặc giảm đều mà biến động theo nhiều pha đối lập, do đó 

MK không phát hiện được xu thế đơn điệu. 

Bảng 3.16. Kết quả kiểm định xu thế AGB giai đoạn 2015–2025 

Chỉ số thống kê Giá trị Ý nghĩa thống kê 

Hệ số tau  -0,1667 Xu thế giảm nhẹ, không có ý nghĩa 

thống kê  

Sen’s slope  -0,0175 p = 0,53 (>0,05), không có xu thế 

rõ rệt. 

Số quan sát (năm) 11 2015 - 2025 

Như vậy, mặc dù tổng sinh khối có sự dao động đáng kể qua các năm, nhưng 

kiểm định thống kê cho thấy xu thế biến đổi AGB trong giai đoạn 2015–2025 là 

không đáng kể, chủ yếu chịu ảnh hưởng bởi các yếu tố ngắn hạn như mất rừng cục 

bộ hoặc phục hồi sinh khối ở những khu vực nhất định. Trên cơ sở đó, nghiên cứu 

tiếp tục sử dụng các khu vực có xu hướng tăng AGB để phân tích khả năng hấp thụ 

và lưu giữ các-bon của RTX, phục vụ định hướng quản lý rừng bền vững và chiến 

lược giảm phát thải tại Đắk Lắk. 

3.4.4. Ước tính khả năng hấp thụ CO2 của rừng 

Sinh khối trên mặt đất của rừng không chỉ phản ánh tiềm năng sản xuất và 

tình trạng sinh thái của hệ sinh thái rừng mà còn là cơ sở quan trọng để ước tính lượng 

các-bon được tích lũy và khả năng hấp thụ khí CO₂ từ khí quyển. Với đặc tính quang 

hợp, rừng hấp thụ CO₂, chuyển hóa thành chất hữu cơ và lưu trữ lâu dài trong sinh 

khối cây, qua đó góp phần giảm phát thải khí nhà kính và điều hòa khí hậu toàn cầu 

(Chen và cộng sự, 2023b; Mo và cộng sự, 2023). 

Trong bối cảnh biến đổi khí hậu ngày càng phức tạp, việc định lượng khả 



123 

 

 

 

năng hấp thụ CO₂ của RTX tại tỉnh Đắk Lắk có ý nghĩa đặc biệt quan trọng. Đây 

không chỉ là cơ sở khoa học để đánh giá vai trò của rừng trong cân bằng các-bon, mà 

còn cung cấp thông tin thiết yếu cho việc xây dựng các chính sách quản lý rừng bền 

vững, tham gia các cơ chế chi trả dịch vụ môi trường rừng (PFES), giảm phát thải từ 

mất rừng và suy thoái rừng (REDD+) hay trung hòa các-bon. 

 

Hình 3.27 thể hiện phân bố tích lũy CO₂ của RTX tỉnh Đắk Lắk trong giai 

đoạn 2015–2025. Nhìn chung, giá trị CO₂ tích lũy có sự khác biệt rõ rệt giữa các khu 

vực, phản ánh sự phân hóa về phân bố sinh khối rừng. Các khu vực có giá trị tích lũy 

CO₂ cao (từ 150–334 tấn/ha) tập trung chủ yếu tại huyện Lắk, phía nam Krông Bông 

và một phần huyện M’Đrắk, nơi còn duy trì diện tích rừng tự nhiên tương đối lớn, địa 

hình đồi núi, độ ẩm cao và mật độ dân cư thấp. Những điều kiện này hạn chế tác động 

suy thoái và tạo thuận lợi cho việc tích lũy sinh khối – các-bon lâu dài. Ngoài ra các 

khu vực phía bắc Krông Năng và rìa phía đông Ea Kar có nhiều mảng rừng có khả 

năng tích lũy CO₂ cao, chủ yếu do địa hình đồi núi xen thung lũng, điều kiện ẩm thuận 

lợi và còn duy trì được các quần thể rừng tự nhiên thứ sinh ít bị khai thác. Đặc điểm 

này giúp thảm rừng tại đây duy trì mật độ tán lá dày, khả năng quang hợp và tốc độ 

tăng trưởng sinh khối cao hơn so với các vùng dễ tiếp cận hoặc khu vực chịu tác động 

sản xuất nông nghiệp. Kết quả này phù hợp với xu hướng chung đã được ghi nhận ở 

các nghiên cứu quy mô nhiệt đới, cho thấy rừng ẩm thứ sinh hoặc rừng tái sinh trưởng 

thành tại Đông Nam Á có khả năng tích lũy CO₂ cao tương đương hoặc thậm chí vượt 

một số vùng rừng nguyên sinh nhờ tốc độ phục hồi mạnh mẽ sau suy thoái (Avitabile 

và cộng sự, 2016; Chave và cộng sự, 2014; Saatchi và cộng sự, 2011).
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Hình 3.27. Bản đồ phân bố CO2 tích lũy giai đoạn 2015-2025 
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Ngược lại, các khu vực có giá trị tích lũy thấp (dưới 50 tấn/ha) phân bố rải 

rác ở những vùng đã chịu tác động mạnh của khai thác gỗ trong quá khứ, chuyển đổi 

mục đích sử dụng đất hoặc chịu áp lực từ sản xuất nông nghiệp lâu dài, điển hình là 

vùng trung tâm Ea Kar và một số xã phía đông Krông Bông. Sự khác biệt này cho 

thấy tiềm năng hấp thụ CO₂ của rừng không đồng đều, phụ thuộc vào cấu trúc và tình 

trạng rừng. Xu hướng này tương tự với nhận định của Avitabile và cộng sự (2016), 

Saatchi và cộng sự (2011) đều chỉ ra rằng rừng bị phân mảnh hoặc suy thoái do canh 

tác nông nghiệp thường có mật độ sinh khối thấp hơn đáng kể so với rừng tự nhiên 

nguyên vẹn, dẫn đến khả năng lưu giữ và hấp thụ các-bon giảm rõ rệt. 

Về mặt định lượng, tổng lượng CO₂ tích lũy của RTX trên toàn tỉnh Đắk Lắk 

giai đoạn 2015–2025 đạt khoảng 2,04 triệu tấn. Giá trị tích lũy CO₂ dao động trong 

khoảng 1,73 – 235,98 tấn/ha, với giá trị trung bình đạt 24,72 tấn/ha. Độ lệch chuẩn 

tương đối lớn (25,75 tấn/ha) cho thấy mức độ biến động cao về khả năng hấp thụ CO₂ 

giữa các khu vực rừng khác nhau. Điều này phản ánh sự khác biệt trong cấu trúc và 

chất lượng rừng: những khu vực rừng tự nhiên giàu trữ lượng có khả năng tích lũy 

CO₂ cao, trong khi các khu vực rừng suy thoái hoặc bị tác động mạnh chỉ tích lũy ở 

mức thấp. 

Bảng 3.17 dưới đây thể hiện thống kê mô tả về lượng CO₂ tích lũy của rừng 

thường xanh giai đoạn 2015–2025: 

Bảng 3.17. Thống kê lượng CO₂ tích lũy RTX tỉnh Đắk Lắk giai đoạn 2015–2025 

Chỉ tiêu Giá trị 

Minimum value (tấn/ha) 1,73 

Maximum value (tấn/ha) 235,98 

Range (tấn/ha) 234,26 

Sum (tấn CO₂) 2.041.141,99 

Mean value (tấn/ha) 24,72 

Standard deviation (tấn/ha) 25,75 

Kết quả thống kê CO₂ tích lũy cho thấy có sự khác biệt rõ rệt giữa các huyện 

trong tỉnh Đắk Lắk giai đoạn 2015–2025 (Hình 3.28). Trong đó, huyện Lắk là khu 

vực có lượng CO₂ tích lũy lớn nhất, đạt 707,36 nghìn tấn, chiếm tỷ lệ cao nhất trong 
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toàn tỉnh. Tiếp theo là huyện Krông Bông với 686,79 nghìn tấn, đóng vai trò là vùng 

rừng trọng điểm về khả năng hấp thụ và lưu giữ CO₂. Các huyện M’Đrắk và Ea Kar 

lần lượt đạt 436,01 nghìn tấn và 130,60 nghìn tấn, thể hiện mức tích lũy trung bình. 

Trong khi đó, huyện Krông Năng ghi nhận lượng CO₂ tích lũy thấp nhất, chỉ khoảng 

79,37 nghìn tấn, phản ánh diện tích RTX hạn chế và mức độ suy thoái cao hơn so với 

các khu vực khác. Xu hướng phân bố này phản ánh quy luật chung về mối quan hệ 

giữa cấu trúc và chất lượng rừng với khả năng hấp thụ CO₂. Các nghiên cứu tại vùng 

nhiệt đới (Avitabile và cộng sự, 2016; Saatchi và cộng sự, 2011) cũng ghi nhận rằng 

rừng tự nhiên và rừng đầu nguồn có mật độ sinh khối cao thường tích lũy CO₂ vượt 

trội so với các khu vực rừng suy thoái hoặc chuyển đổi mục đích sử dụng đất. 

 

Hình 3.28. Biểu đồ tổng tích lũy CO2 theo huyện 

Như vậy, có thể nhận định rằng sự phân bố không gian của CO₂ tích lũy trên 

địa bàn tỉnh Đắk Lắk chịu ảnh hưởng mạnh bởi diện tích, trạng thái rừng và mức độ 

tác động nhân sinh. Những huyện có diện tích rừng thường xanh lớn, ít bị chuyển đổi 

mục đích sử dụng đất (như Lắk, Krông Bông) có khả năng hấp thụ và lưu giữ CO₂ 

cao hơn rõ rệt so với những huyện có áp lực khai thác, chuyển đổi rừng lớn. 

Kết quả này góp phần khẳng định vai trò quan trọng của RTX trong điều hòa 

khí hậu và giảm phát thải khí nhà kính. Việc phân bố tích lũy CO₂ không đồng nhất 
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cũng nhấn mạnh tầm quan trọng của quản lý rừng theo vùng, đặc biệt cần ưu tiên bảo 

vệ các khu vực rừng có trữ lượng CO₂ cao để duy trì và nâng cao vai trò hấp thụ các-

bon của rừng trong dài hạn.  



128 

 

 

 

KẾT LUẬN VÀ KIẾN NGHỊ 

Kết luận 

Luận án “Ước lượng khả năng hấp thụ CO₂ của kiểu RTX trên địa bàn tỉnh 

Đắk Lắk dựa vào dữ liệu viễn thám và kỹ thuật GIS” đã đạt được các mục tiêu nghiên 

cứu đề ra và có những đóng góp quan trọng về mặt khoa học và thực tiễn trong lĩnh 

vực quản lý tài nguyên rừng, giám sát các-bon và ứng phó biến đổi khí hậu. 

Luận án đã hệ thống hóa và cập nhật các tiến bộ trong ứng dụng công nghệ 

viễn thám và GIS cho ước tính sinh khối rừng, đồng thời lựa chọn và xây dựng quy 

trình phân tích phù hợp với điều kiện sinh thái dữ liệu của tỉnh Đắk Lắk; đồng thời 

với nguồn lực hiện có của nghiên  cứu. Phương pháp nghiên cứu tích hợp gồm: (i) xử 

lý ảnh Landsat và Sentinel; (ii) tính toán và lựa chọn các chỉ số phổ – ra-đa có ý nghĩa; 

(iii) kiểm định thống kê (Pearson, PCA, hồi quy đơn và đa biến); và (iv) mô hình học 

máy Random Forest (RF) kết hợp kiểm định chéo phân tầng k-fold. Kết hợp giữa dữ 

liệu quang học (B7, MSI, NDWI), dữ liệu địa hình (elevation, slope) và dữ liệu ra-đa 

(VH) đã chứng minh hiệu quả trong mô phỏng biến động sinh khối rừng. Phép biến 

đổi lô-ga-rít của AGB được áp dụng giúp giảm sai số và nâng cao độ ổn định thống 

kê của các mô hình ước lượng. 

Kết quả phân loại thảm phủ bằng thuật toán RF đạt độ chính xác tổng thể 

trung bình 97,44% và chỉ số Kappa 0,95, thể hiện khả năng nhận dạng tốt RTX. Phân 

bố diện tích rừng theo không gian cho thấy RTX của tỉnh tập trung phân bố chủ yếu 

ở phía Đông – Nam, nơi có địa hình cao và dốc, khó tiếp cận. 

Dữ liệu AGB ô mẫu sau khi biến đổi lo-ga-rít cho thấy phân bố dữ liệu trở 

nên chuẩn hóa hơn, tạo điều kiện thuận lợi cho các mô hình hồi quy và học máy. Kết 

quả phân tích tương quan và hồi quy cho thấy các biến B7, MSI, NDWI, VH, 

elevation và slope có mối quan hệ có ý nghĩa thống kê với logAGB (p < 0,05). Kết 

hợp ảnh quang học, địa hình và ra-đa với mô hình RF có cải thiện độ chính xác của 

mô hình hồi quy giữa AGB với các nhân tố viễn thám. Mô hình hồi quy RF cho kết 
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quả ước lượng có độ tin cậy cao hơn so với mô hình hồi quy tuyến tính đa biến và mô 

hình hồi quy phi tuyến GAM với hệ số R2 lần lượt là 0,51, 0,59 và 0,88. Kiểm định 

chéo phân tầng k-fold RF vượt trội nhất trong cả hai cấu hình k, với: R² cao nhất 

(0,55), RMSE thấp nhất (~0,818), MAE thấp nhất (~0,637). Điều này chứng minh ưu 

thế của RF khi mô hình hóa mối quan hệ phi tuyến phức tạp và tương tác giữa nhiều 

biến viễn thám đồng thời. Sử dụng dữ liệu độc lập để đánh giá sai số ước lượng cho 

thấy mô hình RF áp dụng cho ảnh vệ tinh quang học có hệ số R2 = 0,132 và các sai 

số RMSE = 1,304, MAE = 1,087 cho thấy ảnh vệ tinh quang học đơn lẻ không giải 

thích tốt mối quan hệ giữa sinh khối và nhân tố ảnh viễn thám so với kết hợp ảnh ra-

đa và ảnh quang học. 

Tổng lượng CO₂ tích lũy của rừng tự nhiên toàn tỉnh giai đoạn 2015-2025 ước 

đạt khoảng 2,04 triệu tấn CO₂. Tính trung bình, lượng CO₂ hấp thụ của RTX trong 

khu vực nghiên cứu đạt trung bình 24,72 tấn CO₂/ha. Các địa phương có tích lũy CO2 

cao trong giai đoạn này là huyện Krông Bông và huyện Lắk với lượng CO2 tích lũy 

lần lượt là 686,79 và 708,36 nghìn tấn CO2. 

Những kết quả này không chỉ góp phần khẳng định vai trò của rừng trong chu 

trình các-bon, mà còn là cơ sở khoa học quan trọng để hoạch định chính sách quản 

lý, bảo vệ và phát triển rừng, cũng như tham gia vào các cơ chế chi trả dịch vụ môi 

trường rừng, giảm phát thải từ mất rừng và suy thoái rừng (REDD+) và trung hòa 

các-bon. 

Tồn tại 

Mặc dù luận án đã đạt được các mục tiêu nghiên cứu đề ra và xây dựng được 

mô hình ước tính sinh khối và khả năng hấp thụ CO₂ cho rừng thường xanh tỉnh Đắk 

Lắk với độ tin cậy khá tốt, nghiên cứu vẫn tồn tại một số hạn chế nhất định. 

Trước hết, dữ liệu thực địa còn hạn chế cả về số lượng và mức độ đồng bộ 

theo thời gian so với quy mô lớn và tính phân mảnh cao của rừng trong toàn tỉnh. 

Việc thiếu đồng nhất về thời điểm thu thập giữa dữ liệu thực địa và ảnh viễn thám, 
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cùng với việc chưa thu thập đầy đủ các thông tin cấu trúc rừng chi tiết, có thể làm gia 

tăng sai số và hạn chế khả năng diễn giải sinh thái của mô hình. 

Thứ hai, hạn chế từ dữ liệu viễn thám chủ yếu xuất phát từ độ phân giải không 

gian của ảnh Landsat và Sentinel (10–30 m), chưa phản ánh đầy đủ cấu trúc rừng hỗn 

loài, nhiều tầng và sinh khối cao. Bên cạnh đó, ảnh quang học chịu ảnh hưởng của 

mây che và điều kiện khí quyển, trong khi dữ liệu radar C-band có xu hướng bão hòa 

ở rừng giàu sinh khối. Việc chưa tích hợp dữ liệu LiDAR mặt đất hoặc không gian 

cũng là một hạn chế trong việc mô tả cấu trúc thẳng đứng của rừng. 

Thứ ba, về mô hình hóa, luận án mới tập trung thử nghiệm một số nhóm mô 

hình đại diện (OLS, GAM và Random Forest). Mặc dù RF cho kết quả tối ưu, nghiên 

cứu chưa mở rộng so sánh với các mô hình học máy nâng cao hơn, chưa đánh giá đầy 

đủ khả năng chuyển tiếp mô hình theo thời gian và chưa phân tích sâu sự khác biệt 

sinh thái theo các điều kiện địa hình – môi trường khác nhau. Do đó, khả năng khái 

quát và mở rộng mô hình sang các kiểu rừng hoặc vùng sinh thái khác vẫn còn hạn 

chế. 

Cuối cùng, về tính ứng dụng quản lý, các kết quả ước tính sinh khối và CO₂ 

mới dừng ở mức cung cấp cơ sở khoa học và dữ liệu tham khảo, chưa được tích hợp 

đầy đủ vào các hệ thống MRV phục vụ REDD⁺ hoặc PFES. 

Kiến nghị 

Trên cơ sở những kết quả đạt được và các hạn chế còn tồn tại của luận án, tác 

giả đề xuất một số kiến nghị sau nhằm nâng cao hiệu quả nghiên cứu và ứng dụng 

trong thời gian tới: 

Thứ nhất, về dữ liệu thực địa, cần tiếp tục mở rộng và chuẩn hóa hệ thống ô 

mẫu rừng theo hướng tăng số lượng, cải thiện tính đại diện và đồng bộ hóa thời gian 

thu thập với dữ liệu viễn thám. Việc bổ sung các thông tin cấu trúc rừng như chiều 

cao tán, mật độ cây, tái sinh và đa dạng loài sẽ góp phần nâng cao độ chính xác của 

mô hình ước tính sinh khối, đồng thời tăng khả năng diễn giải sinh thái của kết quả 
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nghiên cứu. 

Thứ hai, về dữ liệu viễn thám, cần đẩy mạnh tích hợp các nguồn dữ liệu có 

khả năng mô tả cấu trúc thẳng đứng của rừng, đặc biệt là dữ liệu LiDAR mặt đất và 

LiDAR không gian (GEDI, ICESat-2), kết hợp với ảnh quang học và ra-đa đa thời 

gian. Cách tiếp cận đa nguồn này sẽ giúp khắc phục hiện tượng bão hòa tín hiệu ở 

rừng sinh khối cao, nâng cao độ tin cậy của bản đồ sinh khối và CO₂ hấp thụ. 

Thứ ba, về phương pháp và mô hình hóa, các nghiên cứu tiếp theo nên mở 

rộng so sánh các thuật toán học máy nâng cao như Gradient Boosting, XGBoost, hoặc 

các thuật toán ANN, Deep learning. Việc phân tích độ nhạy của sinh khối theo các 

điều kiện sinh thái – địa hình khác nhau cũng là hướng nghiên cứu cần thiết nhằm 

làm rõ cơ chế biến động sinh khối rừng. 

Thứ tư, về tính ứng dụng quản lý, cần từng bước tích hợp kết quả ước tính 

sinh khối và CO₂ vào các hệ thống MRV phục vụ REDD⁺ và chi trả dịch vụ môi 

trường rừng (PFES). Đồng thời, việc xây dựng các quy trình kỹ thuật và bộ công cụ 

đơn giản hóa trên nền tảng GIS và viễn thám sẽ giúp các cơ quan quản lý rừng địa 

phương có thể áp dụng thường xuyên và hiệu quả hơn trong công tác theo dõi diễn 

biến rừng. 

Nhìn chung, các kiến nghị trên không chỉ góp phần hoàn thiện hướng nghiên 

cứu trong tương lai mà còn tạo tiền đề để chuyển hóa các kết quả khoa học của luận 

án thành công cụ hỗ trợ thiết thực cho quản lý và sử dụng bền vững tài nguyên rừng 

trong bối cảnh biến đổi khí hậu và thực hiện các cam kết giảm phát thải của Việt 

Nam. 
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P-1 

 

 

 

PHỤ LỤC 

1. Phụ lục 1: Dữ liệu mô hình hóa 

TT AGB logAGB B7 MSI NDWI VH elevation slope Year 

1 68,86 4,25 0,06 0,39 -0,76 0,44 0,78 0,08 2020 

2 96,07 4,58 0,05 0,43 -0,73 0,47 0,94 0,08 2020 

3 117,58 4,78 0,05 0,38 -0,78 0,60 0,84 0,28 2020 

4 131,95 4,89 0,05 0,41 -0,77 0,55 0,80 0,70 2020 

5 133,98 4,91 0,04 0,30 -0,79 0,28 0,82 0,47 2020 

6 136,79 4,93 0,05 0,41 -0,79 0,52 0,94 0,15 2020 

7 150,89 5,02 0,08 0,55 -0,75 0,39 0,91 0,00 2020 

8 159,07 5,08 0,07 0,52 -0,72 0,33 0,79 0,45 2020 

9 161,73 5,09 0,05 0,41 -0,78 0,36 0,89 0,19 2020 

10 172,76 5,16 0,05 0,40 -0,79 0,63 0,96 0,00 2020 

11 189,71 5,25 0,05 0,42 -0,77 0,48 0,72 0,28 2020 

12 190,20 5,25 0,09 0,58 -0,63 0,45 0,98 0,29 2020 

13 318,30 5,77 0,05 0,42 -0,78 0,40 0,93 0,36 2020 

14 6,73 2,05 0,07 0,56 -0,68 0,26 0,43 0,55 2021 

15 16,62 2,87 0,09 0,53 -0,76 0,79 0,45 0,48 2021 

16 31,75 3,49 0,06 0,54 -0,68 0,79 0,53 0,71 2021 

17 37,19 3,64 0,05 0,46 -0,72 0,22 0,52 0,54 2021 

18 42,78 3,78 0,08 0,50 -0,76 0,82 0,44 0,59 2021 

19 43,44 3,79 0,08 0,55 -0,69 0,68 0,52 0,76 2021 

20 45,70 3,84 0,07 0,52 -0,69 0,87 0,41 0,80 2021 

21 46,09 3,85 0,08 0,57 -0,70 0,51 0,92 0,74 2021 

22 47,10 3,87 0,06 0,53 -0,71 0,64 0,47 0,10 2021 

23 48,72 3,91 0,06 0,45 -0,76 0,82 0,44 0,12 2021 

24 48,89 3,91 0,09 0,54 -0,74 0,62 0,42 0,35 2021 

25 53,79 4,00 0,07 0,49 -0,77 0,74 0,42 0,51 2021 

26 57,87 4,08 0,08 0,51 -0,77 0,88 0,38 0,57 2021 

27 62,92 4,16 0,08 0,63 -0,67 0,67 0,41 0,16 2021 

28 107,08 4,68 0,05 0,53 -0,72 0,43 0,47 0,76 2021 

29 109,39 4,70 0,08 0,47 -0,76 0,27 0,72 1,00 2021 

30 127,11 4,85 0,10 0,56 -0,77 1,00 0,76 0,62 2021 

31 141,47 4,96 0,05 0,42 -0,79 0,00 0,85 0,73 2021 

32 165,87 5,12 0,07 0,62 -0,66 0,48 1,00 0,57 2021 

33 17,14 2,90 0,05 0,45 -0,75 0,44 0,49 0,00 2022 

34 138,35 4,94 0,05 0,41 -0,76 0,37 0,66 0,15 2022 

35 140,89 4,96 0,05 0,40 -0,75 0,42 0,49 0,19 2022 

36 164,73 5,11 0,05 0,42 -0,76 0,24 0,47 0,38 2022 

37 1,07 0,73 0,12 0,64 -0,63 0,47 0,00 0,17 2023 

38 1,32 0,84 0,08 0,57 -0,73 0,56 0,43 0,35 2023 

39 1,75 1,01 0,09 0,62 -0,65 0,53 0,07 0,18 2023 

40 7,64 2,16 0,12 0,80 -0,65 0,47 0,03 0,13 2023 



P-2 

 

 

 

TT AGB logAGB B7 MSI NDWI VH elevation slope Year 

41 9,17 2,32 0,09 0,73 -0,62 0,38 0,06 0,23 2023 

42 27,30 3,34 0,08 0,61 -0,64 0,38 0,16 0,53 2023 

43 52,17 3,97 0,16 0,83 -0,56 0,33 0,42 0,43 2023 

44 57,21 4,06 0,06 0,49 -0,69 0,76 0,89 0,43 2023 

45 67,84 4,23 0,08 0,58 -0,70 0,62 0,42 0,38 2023 

46 127,37 4,85 0,04 0,46 -0,73 0,37 0,55 0,32 2023 

47 137,61 4,93 0,05 0,45 -0,75 0,62 0,69 0,38 2023 

48 179,14 5,19 0,06 0,51 -0,76 0,67 0,66 0,05 2023 

49 191,00 5,26 0,04 0,43 -0,74 0,19 0,88 0,40 2023 

50 191,00 5,26 0,04 0,43 -0,74 0,19 0,88 0,40 2023 

51 196,37 5,29 0,07 0,51 -0,76 0,39 0,38 0,12 2023 

52 214,58 5,37 0,06 0,48 -0,72 0,69 0,62 0,51 2023 

53 219,58 5,40 0,05 0,51 -0,69 0,42 0,69 0,55 2023 

54 359,73 5,89 0,06 0,46 -0,72 0,85 0,87 0,74 2023 

55 384,53 5,95 0,04 0,47 -0,71 0,23 0,91 0,47 2023 

56 393,68 5,98 0,06 0,53 -0,70 0,46 0,85 0,23 2023 

57 644,79 6,47 0,06 0,54 -0,70 0,67 0,56 0,55 2023 

58 66,59 4,21 0,08 0,70 -0,63 0,50 0,55 0,06 2024 

59 74,72 4,33 0,06 0,46 -0,74 0,41 0,48 0,18 2024 

60 113,34 4,74 0,05 0,42 -0,75 0,50 0,54 0,32 2024 

61 120,45 4,80 0,07 0,58 -0,66 0,57 0,55 0,64 2024 

62 123,24 4,82 0,06 0,48 -0,73 0,50 0,47 0,52 2024 

63 131,49 4,89 0,07 0,59 -0,67 0,43 0,66 0,43 2024 

64 132,71 4,90 0,05 0,41 -0,76 0,11 0,44 0,58 2024 

65 173,35 5,16 0,05 0,42 -0,75 0,50 0,54 0,32 2024 

66 188,80 5,25 0,06 0,52 -0,71 0,58 0,56 0,11 2024 

67 236,27 5,47 0,06 0,50 -0,68 0,48 0,64 0,36 2024 

68 250,31 5,53 0,04 0,40 -0,77 0,27 0,49 0,31 2024 

69 280,03 5,64 0,05 0,52 -0,68 0,37 0,61 0,35 2024 

70 395,89 5,98 0,07 0,59 -0,65 0,61 0,65 0,53 2024 

 

  



P-3 

 

 

 

2. Phụ lục 2: Dữ liệu đánh giá độc lập 

TT AGB logAGB B7 MSI VH elevation slope Year 

1 13,73 2,62 0,05 0,45 0,36 0,50 0,25 2013 

2 72,67 4,29 0,06 0,48 0,39 0,08 0,07 2013 

3 76,72 4,34 0,06 0,42 0,31 0,45 0,25 2013 

4 77,50 4,35 0,06 0,49 0,40 0,20 0,82 2013 

5 80,20 4,38 0,06 0,41 0,71 0,10 0,39 2013 

6 80,63 4,39 0,06 0,48 0,31 0,32 0,84 2013 

7 82,16 4,41 0,07 0,46 0,48 0,02 0,00 2013 

8 87,83 4,48 0,07 0,44 0,32 0,37 0,56 2013 

9 96,99 4,57 0,06 0,43 0,48 0,35 0,70 2013 

10 103,50 4,64 0,07 0,47 0,17 0,25 0,72 2013 

11 114,03 4,74 0,06 0,43 0,73 0,10 0,41 2013 

12 114,35 4,74 0,07 0,46 0,48 0,02 0,00 2013 

13 118,58 4,78 0,07 0,47 0,45 0,45 0,42 2013 

14 132,15 4,88 0,07 0,52 0,36 0,29 0,72 2013 

15 136,38 4,92 0,07 0,44 0,49 0,05 0,46 2013 

16 141,02 4,95 0,11 0,82 0,42 0,02 0,55 2013 

17 142,50 4,96 0,07 0,42 0,63 0,21 0,65 2013 

18 147,42 4,99 0,07 0,48 0,39 0,20 0,20 2013 

19 148,38 5,00 0,05 0,45 0,44 0,46 0,10 2013 

20 150,09 5,01 0,05 0,42 0,61 0,20 0,15 2013 

21 152,10 5,02 0,07 0,47 0,44 0,20 0,03 2013 

22 155,72 5,05 0,05 0,44 0,45 0,87 0,55 2013 

23 157,75 5,06 0,06 0,49 0,33 0,00 0,09 2013 

24 168,30 5,13 0,05 0,41 0,63 0,44 0,18 2013 

25 168,48 5,13 0,06 0,44 0,60 0,26 0,29 2013 

26 172,01 5,15 0,08 0,49 0,20 0,27 1,00 2013 

27 193,90 5,27 0,07 0,51 0,59 0,04 0,59 2013 

28 196,40 5,28 0,05 0,42 0,19 0,55 0,49 2013 

29 198,03 5,29 0,07 0,55 0,38 0,04 0,38 2013 

30 199,21 5,29 0,06 0,40 0,00 0,40 0,71 2013 

31 204,72 5,32 0,07 0,48 0,49 0,10 0,24 2013 

32 209,83 5,35 0,06 0,38 0,46 0,28 0,25 2013 

33 225,41 5,42 0,06 0,45 0,10 0,76 0,75 2013 

34 225,44 5,42 0,06 0,41 0,49 0,22 0,27 2013 

35 226,80 5,42 0,05 0,44 0,43 0,95 0,60 2013 

36 227,55 5,43 0,06 0,52 0,64 0,11 0,55 2013 

37 236,35 5,47 0,05 0,43 0,35 0,23 0,06 2013 

38 250,66 5,52 0,05 0,41 0,65 0,58 0,58 2013 

39 264,15 5,58 0,04 0,42 0,30 0,58 0,62 2013 

40 273,99 5,61 0,05 0,44 0,45 0,21 0,31 2013 

41 282,23 5,64 0,06 0,39 0,16 0,39 0,84 2013 

42 330,69 5,80 0,04 0,42 0,57 0,85 0,63 2013 
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TT AGB logAGB B7 MSI VH elevation slope Year 

43 336,40 5,82 0,04 0,41 1,00 0,89 0,75 2013 

44 373,80 5,92 0,05 0,47 0,58 0,51 0,31 2013 

45 471,93 6,16 0,07 0,40 0,21 0,32 0,56 2013 

46 473,39 6,16 0,04 0,38 0,54 0,67 0,83 2013 

47 551,24 6,31 0,06 0,45 0,34 1,00 0,73 2013 

 

3. Phụ lục 3:  Code xử lý tải ảnh vệ tinh 

// Tải ranh giới tỉnh Đắk Lắk 

// ========================================= 

var roi = ee.FeatureCollection("FAO/GAUL/2015/level1") 

  .filter(ee.Filter.eq('ADM1_NAME', 'Dak Lak')); 

Map.centerObject(roi, 8); 

// =============================================== 

// === 1. DỮ LIỆU ĐIỂM HUẤN LUYỆN (AGB) ========= 

// =============================================== 

var points = points.filterBounds(roi).filter(ee.Filter.notNull(['AGB_D_H', 'Year'])); 

// Tạo trường logAGB = log(AGB_D_H + 1) 

points = points.map(function(f){ 

  var agb = ee.Number(f.get('AGB_D_H')); 

  return f.set('logAGB', agb.add(1).log()); 

}); 

var label = 'logAGB'; 

// =============================================== 

// === 2. HÀM TẠO STACK ẢNH CHO 1 NĂM =========== 

// =============================================== 

function makeStack(year) { 

  // ----- ẢNH QUANG HỌC (Landsat 8) ----- 

  var landsat = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") 

    .filterBounds(roi) 

    .filter(ee.Filter.calendarRange(year, year, 'year')) 

    .map(function(img){ 

      var qa = img.select('QA_PIXEL'); 

      var cloudMask = qa.bitwiseAnd(1 << 3).eq(0).and(qa.bitwiseAnd(1 << 4).eq(0)); 

      var img_sr = img.updateMask(cloudMask) 

        .multiply(0.0000275).add(-0.2) // scale Landsat SR 

        .select(['SR_B2','SR_B3','SR_B4','SR_B5','SR_B6','SR_B7'], 

                ['B2','B3','B4','B5','B6','B7']); 

      return img_sr; 

    }) 

    .median(); 

  // ----- CHỈ SỐ THỰC VẬT ----- 

  var ndvi = landsat.normalizedDifference(['B5','B4']).rename('NDVI'); 

  var evi  = landsat.expression( 

    '2.5 * ((B5 - B4) / (B5 + 6*B4 - 7.5*B2 + 1))', 
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    {'B2': landsat.select('B2'), 

     'B4': landsat.select('B4'), 

     'B5': landsat.select('B5')}).rename('EVI'); 

  var savi = landsat.expression( 

    '((B5 - B4) / (B5 + B4 + 0.5)) * 1.5', 

    {'B4': landsat.select('B4'), 

     'B5': landsat.select('B5')}).rename('SAVI'); 

  var arvi = landsat.expression( 

    '(B5 - (2*B4 - B2)) / (B5 + (2*B4 - B2))', 

    {'B2': landsat.select('B2'), 

     'B4': landsat.select('B4'), 

     'B5': landsat.select('B5')}).rename('ARVI'); 

  var sipi = landsat.expression( 

    '(B5 - B3) / (B5 - B2)', 

    {'B2': landsat.select('B2'), 

     'B3': landsat.select('B3'), 

     'B5': landsat.select('B5')}).rename('SIPI'); 

  var ndwi = landsat.normalizedDifference(['B3','B5']).rename('NDWI'); 

  var msi  = landsat.expression('B6 / B5', { 

    'B6': landsat.select('B6'), 

    'B5': landsat.select('B5') 

  }).rename('MSI'); 

  var gndvi = landsat.normalizedDifference(['B5','B3']).rename('GNDVI'); 

  var sr = landsat.expression('B5 / B4', { 

    'B5': landsat.select('B5'), 

    'B4': landsat.select('B4') 

  }).rename('SR'); 

  // ----- ĐỊA HÌNH ----- 

  var srtm = ee.Image("USGS/SRTMGL1_003"); 

  var elev = srtm.select('elevation').rename('elevation'); 

  var slope = ee.Terrain.slope(srtm).rename('slope'); 

  // ----- RADAR (Sentinel-1 VV, VH) ----- 

  var s1 = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filterBounds(roi) 

    .filter(ee.Filter.calendarRange(year, year, 'year')) 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.eq('resolution_meters', 10)) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

    .filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

    .select(['VV','VH']) 

    .median(); 

  // ----- GỘP TẤT CẢ THÀNH STACK ----- 

  var stack = landsat 

    .addBands([ndvi, evi, savi, arvi, sipi, ndwi, msi, gndvi, sr]) 

    .addBands([elev, slope]) 

    .addBands(s1); 
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  return stack.clip(roi); 

} 

// =============================================== 

// === 3. LẤY MẪU CHO MỖI NĂM ==================== 

// =============================================== 

function getTrainingForYear(year) { 

  var stack = makeStack(year); 

  var ptsYear = points.filter(ee.Filter.eq('Year', year)); 

  var samples = stack.sampleRegions({ 

    collection: ptsYear, 

    properties: ['AGB_D_H', 'logAGB', 'Year'], 

    scale: 30, 

    geometries: false 

  }).filter(ee.Filter.notNull(stack.bandNames())); 

  return samples; 

} 

// =============================================== 

// === 4. GỘP TẤT CẢ CÁC NĂM ==================== 

// =============================================== 

var yearsTrain = [2020, 2021, 2022, 2023, 2024]; 

var allSamples = ee.FeatureCollection([]); 

 

yearsTrain.forEach(function(y) { 

  var s = getTrainingForYear(y); 

  allSamples = allSamples.merge(s); 

}); 

// =============================================== 

// === 5. KIỂM TRA & XUẤT RA DRIVE ============== 

// =============================================== 

print('Tổng số điểm mẫu (2020–2024):', allSamples.size()); 

print(allSamples.limit(10)); 

 

Export.table.toDrive({ 

  collection: allSamples, 

  description: 'Samples_Train_20_24_full', 

  folder: 'PhD_BAO', 

  fileNamePrefix: 'Samples_20_24_full', 

  fileFormat: 'CSV' 

}); 

// ============================================================= 

// 6. TRAIN MÔ HÌNH RANDOM FOREST (ntree = 1500, mtry = 6) 

// ============================================================= 

 

// Các biến sẽ dùng để dự báo 

var predictors = [ 

  'B7', 'NDWI', 'MSI', 'VH', 'slope', 'elevation' 
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]; 

// Train RF 

var predictors = ['B7', 'NDWI', 'MSI', 'VH', 'slope', 'elevation']; 

var rf = ee.Classifier.smileRandomForest({ 

  numberOfTrees: 1500, 

  variablesPerSplit: 6, 

  bagFraction: 0.7 

}) 

.setOutputMode('REGRESSION') 

.train({ 

  features: allSamples, 

  classProperty: 'logAGB', 

  inputProperties: predictors 

}); 

print("RF Regression Model:", rf); 

// LƯU MÔ HÌNH RF VÀO ASSET// 

var trees = ee.FeatureCollection(rf.explain().get('trees')); 

Export.table.toAsset({ 

  collection: trees, 

  description: 'Export_RF_Model', 

  assetId: 'users/YOUR_USERNAME/rf_model_agb_1500_6' 

}); 

 

//DỰ BÁO AGB THEO NĂM// 

function predictAGB(year) { 

  var stack = makeStack(year); 

  var img = stack.select(predictors); 

  // Dự báo logAGB 

  var log_pred = img.classify(rf).rename('logAGB_pred'); 

  // Chuyển về AGB 

  var agb = log_pred.exp().subtract(1).rename('AGB_pred'); 

  return agb.set('year', year).clip(roi); 

} 

 

//TẠO ẢNH COLLECTION// 

var yearsPred = ee.List.sequence(2015, 2025); 

var agbCollection = ee.ImageCollection( 

  yearsPred.map(function(y) { 

    return predictAGB(ee.Number(y)); 

  }) 

); 

print("AGB Predictions (2015–2025):", agbCollection); 

//HIỂN THỊ NĂM 2025// 

var agb2025 = agbCollection.filter(ee.Filter.eq('year', 2025)).first(); 

Map.addLayer(agb2025,  

  {min: 0, max: 300, palette: ['yellow','green','darkgreen']},  

  'AGB 2025'); 



P-8 

 

 

 

 

//TẢI BẢN ĐỒ AGB// 

yearsPred.getInfo().forEach(function(y) { 

  var img = agbCollection.filter(ee.Filter.eq('year', y)).first(); 

  Export.image.toDrive({ 

    image: img, 

    description: 'AGB_' + y, 

    folder: 'PhD_BAO', 

    fileNamePrefix: 'AGB_RF_' + y, 

    region: roi.geometry(), 

    scale: 30, 

    maxPixels: 1e13 

  }); 

}); 

 

 

Phụ lục 3:  Code xử lý số liệu trên RStudio 

#1. CÀI & NẠP GÓI 

# =========================== 

install.packages("tidyverse", repos = "https://cloud.r-project.org/") 

install.packages("car", repos = "https://cloud.r-project.org/") 

install.packages("mgcv", repos = "https://cloud.r-project.org/") 

install.packages("randomForest", repos = "https://cloud.r-project.org/") 

install.packages("GGally", repos = "https://cloud.r-project.org/") 

 

library(tidyverse) 

library(car)            # VIF 

library(mgcv)           # GAM 

library(randomForest)   # RF 

library(GGally)         # correlation plot 

# =========================== 

# 2. ĐỌC DỮ LIỆU 

# =========================== 

df <- read.csv("D:/NCS2024/Luan_an/Data/Omau_20-24.csv") 

df1 <- read.csv("D:/NCS2024/Luan_an/Data/Omau_2013_Nov1.csv") 

#view(df) 

#view(df1) 

 

#3. Kiểm tra dữ liệu 

str(df) 

summary(df) 

 

# 4. HỒI QUY TUYẾN TÍNH 

# =========================== 
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######################### 

#Hồi quy tuyến tính từng biến 

lr1 <- lm(AGB ~ B7, data=df) 

summary(lr1) 

# Hồi quy đơn MSI 

lr2 <- lm(AGB ~ MSI, data=df) 

summary(lr2) 

# Hồi quy đơn: AGB ~ NDWI 

lr3 <- lm(AGB ~ NDWI, data=df) 

summary(lr3) 

# Hồi quy đơn VH 

lr4 <- lm(AGB ~ VH, data=df) 

summary(lr4) 

# Hồi quy đơn: AGB ~ ele 

lr5 <- lm(AGB ~ elevation, data=df) 

summary(lr5) 

# Hồi quy đơn: AGB ~ slope 

lr7 <- lm(AGB ~ slope, data=df) 

summary(lr7) 

######################## 

# Hồi quy đa biến: AGB ~ nhiều biến 

data<-df 

lm_multi <- lm(AGB ~ B7+ MSI+NDWI+VH+elevation+slope, data=data) 

summary(lm_multi) 

# Hồi quy đa biến: logAGB ~ nhiều biến 

lm_multi2 <- lm(logAGB ~ B7+ MSI+NDWI+VH+elevation+slope, data=data) 

summary(lm_multi2) 

lm_multi3 <- lm(logAGB ~ GNDVI+B6+B7+ MSI+VH+elevation+slope, data=data) 

# Kiểm tra đa cộng tuyến 

vif(lm_multi) 

# Kiểm tra đa cộng tuyến logAGB 

vif(lm_multi2) 

vif(lm_multi3) 

lm_multi4 <- lm(logAGB ~ B7+ elevation, data=data) 

summary(lm_multi4) 

############################## 

# =========================== 

# 5. MÔ HÌNH PHI TUYẾN (GAM) 

# =========================== 

gam1 <- gam(logAGB ~  s(B2)+ s(B3)+ s(B4)+ s(B5)+ s(B6)+ s(B7)+ s(NDVI)+ s(GNDVI) 

+ s(ARVI) + s(EVI)+ s(SAVI)  + s(SIPI)+ s(SR)+ s(NDWI) + s(MSI) + s(VH)+ s(HH) 

+s(elevation)+s(slope), data=data) 

summary(gam2) 

 

gam2 <- gam(logAGB ~  s(B7)+ s(NDWI) + s(MSI) + s(VH)+s(elevation)+s(slope), 

data=data) 

summary(gam2) 
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# 2. Nạp thư viện vẽ GAM 

install.packages("gratia")      

library(gratia) 

library(ggplot2) 

 

# 3. Vẽ bằng draw() (ggplot style) 

draw(gam2) + 

  labs(title = "GAM Smooth Terms", x = "Predictors", y = "Effect on log(AGB)") + 

  theme_minimal(base_size = 14) 

# =========================== 

# 6. RANDOM FOREST 

# =========================== 

set.seed(42) 

library(randomForest) 

library(caret) 

library(Metrics) 

library(ggplot2) 

 

# 6.1 CHUẨN BỊ DỮ LIỆU 

# =========================================== 

#vars_selected <- c("ARVI","B2","B3","B4","B5","B6","B7","EVI", "GNDVI", "MSI", 

"NDVI", "NDWI","SAVI", "SIPI", "SR","VV","VH", "elevation", "slope") 

#vars_selected <- c("ARVI","B2","B3","B4","B5","B6","B7","EVI", "GNDVI", "MSI", 

"NDVI", "NDWI","SAVI", "SIPI", "SR", "elevation", "slope") 

vars_selected <- c("B7","MSI","NDWI","VH","elevation","slope") 

#vars_selected <- c("B7","MSI","NDWI","elevation","slope") 

# Chuyển sang số và loại bỏ NA 

data_rf <- df[, c("logAGB", vars_selected)] 

#data_rf[] <- lapply(data_rf, function(x) as.numeric(as.character(x))) 

#data_rf <- na.omit(data_rf) 

# =========================================== 

# 6.2 PHÂN TẦNG DỮ LIỆU (STRATIFIED SAMPLING) 

# =========================================== 

set.seed(42) 

# Tạo nhóm phân tầng theo giá trị logAGB (5 nhóm) 

data_rf$bin <- cut(data_rf$logAGB, breaks = 5, labels = FALSE) 

# Tạo index chia train/test có phân tầng 

trainIndex <- createDataPartition(data_rf$bin, p = 0.8, list = FALSE) 

train_data <- data_rf[trainIndex, ] 

test_data  <- data_rf[-trainIndex, ] 

# Xóa cột phân tầng 

train_data$bin <- NULL 

test_data$bin  <- NULL 

# =========================================== 

# 6.3 THIẾT LẬP & HUẤN LUYỆN MÔ HÌNH RF 

# =========================================== 
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ntree_val <- 1500 

mtry_val  <- 6 

rf_model <- randomForest( 

  logAGB ~ .,  

  data = train_data, 

  ntree = ntree_val, 

  mtry = mtry_val, 

  importance = TRUE 

) 

 

# =========================================== 

# 6.4 ĐÁNH GIÁ TRAIN / TEST 

# =========================================== 

pred_train <- predict(rf_model, newdata = train_data) 

pred_test  <- predict(rf_model, newdata = test_data) 

R2_train   <- cor(train_data$logAGB, pred_train, use="complete.obs")^2 

RMSE_train <- sqrt(mean((train_data$logAGB - pred_train)^2, na.rm=TRUE)) 

MAE_train  <- mean(abs(train_data$logAGB - pred_train), na.rm=TRUE) 

R2_test   <- cor(test_data$logAGB, pred_test, use="complete.obs")^2 

RMSE_test <- sqrt(mean((test_data$logAGB - pred_test)^2, na.rm=TRUE)) 

MAE_test  <- mean(abs(test_data$logAGB - pred_test), na.rm=TRUE) 

cat("==== HIỆU NĂNG MÔ HÌNH RANDOM FOREST (PHÂN TẦNG) ====\n") 

cat("Số cây (ntree):", ntree_val, "\n") 

cat("Số biến (mtry):", mtry_val, "\n\n") 

cat(">> TRAIN:\n") 

cat("R² =", round(R2_train, 4), "  RMSE =", round(RMSE_train, 4), "  MAE =", 

round(MAE_train, 4), "\n\n") 

cat(">> TEST:\n") 

cat("R² =", round(R2_test, 4), "  RMSE =", round(RMSE_test, 4), "  MAE =", 

round(MAE_test, 4), "\n\n") 

 

# =========================================== 

# 6.5 VẼ ĐỒ THỊ MINH HỌA MỐI TƯƠNG QUAN 

# =========================================== 

# --- Hàm vẽ đồ thị tương quan --- 

plot_corr <- function(obs, pred, title_text) { 

  df_plot <- data.frame(Observed = obs, Predicted = pred) 

    # Tính hệ số đánh giá 

  R2   <- round(cor(obs, pred, use = "complete.obs")^2, 3) 

  RMSE <- round(sqrt(mean((obs - pred)^2, na.rm = TRUE)), 3) 

  MAE  <- round(mean(abs(obs - pred), na.rm = TRUE), 3) 

    ggplot(df_plot, aes(x = Observed, y = Predicted)) + 

    geom_point(color = "#1f77b4", alpha = 0.6, size = 2.8) + 

    geom_smooth(method = "lm", color = "red", se = FALSE, linetype = "solid") + 

    geom_abline(slope = 1, intercept = 0, color = "darkgreen", linetype = "dashed", size = 1) 

+ 

    labs( 
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      title = title_text, 

      subtitle = paste("R² =", R2, "| RMSE =", RMSE, "| MAE =", MAE), 

      x = "Observed log(AGB)", 

      y = "Predicted log(AGB)" 

    ) + 

    theme_bw(base_size = 13) + 

    theme( 

      plot.title = element_text(face = "bold", hjust = 0.5), 

      plot.subtitle = element_text(hjust = 0.5, color = "gray30"), 

      panel.grid.minor = element_blank() 

    ) 

} 

 

# --- Biểu đồ cho tập TRAIN --- 

plot_train <- plot_corr(train_data$logAGB, pred_train,  

                        "Random Forest_Sel_vars") 

# --- Biểu đồ cho tập TEST --- 

plot_test <- plot_corr(test_data$logAGB, pred_test,  

                       "Testing Data - Random Forest") 

# Hiển thị 

print(plot_train) 

print(plot_test) 

# =========================================== 

# 6.6 BIỂU ĐỒ TẦM QUAN TRỌNG CỦA BIẾN (VARIABLE IMPORTANCE) 

# =========================================== 

cat("\n==== TẦM QUAN TRỌNG CỦA BIẾN TRONG MÔ HÌNH ====\n") 

print(importance(rf_model)) 

varImpPlot(rf_model, main = "Tầm quan trọng của các biến - Random Forest") 

# =========================== 

# 7. ĐÁNH GIÁ MÔ HÌNH OLS, GAM, RF 

# =========================== 

# Hàm tính RMSE và MAE 

rmse <- function(obs, pred) sqrt(mean((obs - pred)^2, na.rm=TRUE)) 

mae  <- function(obs, pred) mean(abs(obs - pred), na.rm=TRUE) 

# Dự báo từ các mô hình 

pred_lm <- predict(lm_multi2, newdata=data) 

pred_gam <- predict(gam2, newdata=data) 

pred_rf <- predict(rf_model, newdata=data) 

# So sánh 

cat("OLS RMSE:", rmse(data$logAGB, pred_lm), "MAE:", mae(data$logAGB, pred_lm), 

"\n") 

cat("GAM RMSE:", rmse(data$logAGB, pred_gam), "MAE:", mae(data$logAGB, 

pred_gam), "\n") 

cat("RF  RMSE:", rmse(data$logAGB, pred_rf), "MAE:", mae(data$logAGB, pred_rf), 

"\n") 

# =========================== 

# 7.1 ĐÁNH GIÁ MÔ HÌNH 
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# =========================== 

# Hàm tính RMSE, MAE, R2 

rmse <- function(obs, pred) sqrt(mean((obs - pred)^2, na.rm=TRUE)) 

mae  <- function(obs, pred) mean(abs(obs - pred), na.rm=TRUE) 

rsq  <- function(obs, pred) cor(obs, pred, use="complete.obs")^2 

 

# Dự báo từ các mô hình 

pred_lm  <- predict(lm_multi2, newdata=data) 

pred_gam <- predict(gam2, newdata=data) 

pred_rf  <- predict(rf_model, newdata=data) 

# Tính toán chỉ số 

results <- data.frame( 

  Model = c("OLS", "GAM", "RF"), 

  RMSE  = c(rmse(data$logAGB, pred_lm), 

            rmse(data$logAGB, pred_gam), 

            rmse(data$logAGB, pred_rf)), 

  MAE   = c(mae(data$logAGB, pred_lm), 

            mae(data$logAGB, pred_gam), 

            mae(data$logAGB, pred_rf)), 

  R2    = c(rsq(data$logAGB, pred_lm), 

            rsq(data$logAGB, pred_gam), 

            rsq(data$logAGB, pred_rf)) 

) 

print(results) 

# =========================== 

# 7.2 VẼ BIỂU ĐỒ SO SÁNH 

# =========================== 

p1 <- ggplot(data, aes(x = logAGB, y = pred_lm)) + 

  geom_point(color = "darkgreen", alpha = 0.6) + 

  geom_abline(intercept = 0, slope = 1, color = "red", linetype="dashed") + 

  labs(title="OLS", x="logAGB thực tế", y="logAGB ước tính") + 

  theme_minimal() 

p2 <- ggplot(data, aes(x = logAGB, y = pred_gam)) + 

  geom_point(color = "orange", alpha = 0.6) + 

  geom_abline(intercept = 0, slope = 1, color = "red", linetype="dashed") + 

  labs(title="GAM", x="logAGB thực tế", y="logAGB ước tính") + 

  theme_minimal() 

p3 <- ggplot(data, aes(x = logAGB, y = pred_rf)) + 

  geom_point(color = "blue", alpha = 0.6) + 

  geom_abline(intercept = 0, slope = 1, color = "red", linetype="dashed") + 

  labs(title="Random Forest", x="logAGB thực tế", y="logAGB ước tính") + 

  theme_minimal() 

#nạp thư viện 

install.packages("gridExtra")    

library(gridExtra) 

# Hiển thị 3 biểu đồ cạnh nhau 

grid.arrange(p1, p2, p3, ncol=3) 
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############################################ 

# 8. ĐÁNH GIÁ MÔ HÌNH BẰNG K-FOLD CROSS-VALIDATION 

# (K = 5 và K = 10) 

############################################ 

# Cài đặt và nạp gói 

install.packages(c("caret", "mgcv", "randomForest", "Metrics")) 

library(caret) 

library(mgcv) 

library(randomForest) 

library(Metrics) 

 

set.seed(123) 

# ------------------------- 

# 8.1 Chuẩn bị dữ liệu 

# ------------------------- 

vars_selected <- c("B7", "NDWI", "VH", "elevation", "slope", "MSI") 

data_sel <- df[, c("logAGB", vars_selected)] 

data_sel <- na.omit(data_sel) 

# ------------------------- 

# 8.2  Thiết lập hàm đánh giá CV 

# ------------------------- 

run_kfold_cv <- function(model_method, data, k) { 

  ctrl <- trainControl(method = "cv", number = k) 

    model_cv <- train( 

    logAGB ~ .,  

    data = data, 

    method = model_method,   # tên mô hình 

    trControl = ctrl, 

    tuneLength = 3 

  ) 

    results <- model_cv$results[which.max(model_cv$results$Rsquared), ] 

  results$k <- k 

  return(results[, c("k", "RMSE", "Rsquared", "MAE")]) 

} 

# ------------------------- 

# 8.3 Chạy CV cho 3 mô hình: OLS, GAM, RF 

# ------------------------- 

# OLS (Linear Regression) 

res_lm_5  <- run_kfold_cv("lm", data_sel, 5) 

res_lm_10 <- run_kfold_cv("lm", data_sel, 10) 

# GAM (phi tuyến) 

res_gam_5  <- run_kfold_cv("gam", data_sel, 5) 

res_gam_10 <- run_kfold_cv("gam", data_sel, 10) 

# Random Forest (RF) 

res_rf_5  <- run_kfold_cv("rf", data_sel, 5) 

res_rf_10 <- run_kfold_cv("rf", data_sel, 10) 

# ------------------------- 
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# 8.4 Tổng hợp kết quả so sánh 

# ------------------------- 

results_cv <- rbind( 

  cbind(Model = "OLS", res_lm_5), 

  cbind(Model = "OLS", res_lm_10), 

  cbind(Model = "GAM", res_gam_5), 

  cbind(Model = "GAM", res_gam_10), 

  cbind(Model = "RF",  res_rf_5), 

  cbind(Model = "RF",  res_rf_10) 

) 

print(results_cv) 

# ------------------------- 

# 8.5 Biểu đồ so sánh R² giữa 5-fold và 10-fold 

# ------------------------- 

library(ggplot2) 

ggplot(results_cv, aes(x = factor(k), y = Rsquared, fill = Model)) + 

  geom_bar(stat = "identity", position = position_dodge()) + 

  labs(title = "So sánh hiệu suất mô hình theo K-Fold CV", 

       x = "Số K trong K-Fold Cross Validation", 

       y = expression(R^2)) + 

  theme_minimal(base_size = 14) 

############################################ 

############################################ 

# 10. ĐÁNH GIÁ MÔ HÌNH RANDOM FOREST BẰNG DỮ LIỆU ĐỘC LẬP 

############################################ 

# Cài đặt & nạp thư viện 

#install.packages(c("randomForest", "Metrics", "ggplot2")) 

library(randomForest) 

library(Metrics) 

library(ggplot2) 

# ------------------------- 

# 10.1 Đọc dữ liệu 

# ------------------------- 

df1 <- read.csv("D:/NCS2024/Luan_an/Data/Omau_2013_Nov1.csv") 

Omau_2013 <- df1 

#view(Omau_2013) 

# ------------------------- 

# 10.2 Chọn các biến sử dụng trong mô hình 

# ------------------------- 

vars_selected <- c("B7", "elevation", "MSI","NDWI","slope") 

train_data <- df[, c("logAGB", vars_selected)] 

test_data  <- Omau_2013[, c("logAGB", vars_selected)] 

view(test_data) 

# ------------------------- 

# 10.3 Huấn luyện mô hình RF trên tập train 

# ------------------------- 

set.seed(42) 
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vars_selected <- c("B7","elevation", "MSI","NDWI","slope") 

data_rf <- df[, c("logAGB", vars_selected)] 

data_rf <- na.omit(data_rf) 

# ------------------------- 

# 10.4 Xây dựng mô hình RF 

# ------------------------- 

set.seed(42) 

rf_model <- randomForest( 

  logAGB ~ .,  

  data = data_rf,  

  ntree = 1500, 

  mtry=6, 

  importance = TRUE 

) 

print(rf_model) 

# ------------------------- 

# 10.5 Dự báo trên dữ liệu độc lập 

# ------------------------- 

pred_rf <- predict(rf_model, newdata = test_data) 

# ------------------------- 

# 10.6 Tính các chỉ số đánh giá 

# ------------------------- 

RMSE_val <- rmse(test_data$logAGB, pred_rf) 

MAE_val  <- mae(test_data$logAGB, pred_rf) 

R2_val   <- cor(test_data$logAGB, pred_rf)^2 

Bias_val <- mean(pred_rf - test_data$logAGB) 

# Tính slope của đường hồi quy 

lm_fit <- lm(pred_rf ~ logAGB, data = test_data) 

Slope_val <- coef(lm_fit)[2] 

# ------------------------- 

# 10.7  Biểu đồ thực tế - dự báo 

# ------------------------- 

ggplot(test_data, aes(x = logAGB, y = pred_rf)) + 

  geom_point(color = "#1b9e77", alpha = 0.7, size = 3) + 

    # Đường x = y (đường 1:1) 

  geom_abline(intercept = 0, slope = 1,  

              color = "red", linetype = "dashed", linewidth = 1) + 

    # Đường hồi quy ước lượng 

  geom_smooth(method = "lm", se = FALSE,  

              color = "blue", linewidth = 1) + 

    labs( 

    title = "Kiểm định mô hình Random Forest bằng dữ liệu độc lập", 

    x = "log(AGB) thực tế (Observed)", 

    y = "log(AGB) ước tính (Predicted)" 

  ) + 

    annotate("text", 

           x = min(test_data$logAGB) + 0.2, 
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           y = max(pred_rf) - 0.3, 

           hjust = 0, vjust = 1, size = 5, color = "black", 

           label = paste0("R² = ", round(R2_val, 3), 

                          "\nRMSE = ", round(RMSE_val, 3), 

                          "\nMAE = ", round(MAE_val, 3), 

                          "\nBias = ", round(Bias_val, 3), 

                          "\nSlope = ", round(Slope_val, 3))) + 

    theme_minimal(base_size = 14) 


